The ACCLIP website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Alexei Lyapustin
Organization:
NASA Goddard Space Flight Center
Business Address:
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Lyapustin, A., et al. (2021), Retrievals of Aerosol Optical Depth and Spectral Absorption From, Front. Remote Sens., 2, 645794, doi:10.3389/frsen.2021.645794.
- Lyapustin, A., F. Zhao, and Y. Wang (2021), A Comparison of Multi-Angle Implementation of Atmospheric Correction and MOD09 Daily Surface Reflectance Products From MODIS, Front. Remote Sens., 2, 712093, doi:10.3389/frsen.2021.712093.
- Lyapustin, A., et al. (2020), MAIAC Thermal Technique for Smoke Injection Height From MODIS, IEEE Geosci. Remote Sens. Lett., 17, 730-734, doi:10.1109/LGRS.2019.2936332.
- Lyapustin, A., et al. (2011), Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET, Geophys. Res. Lett., 38, L10803, doi:10.1029/2011GL047306.
- Lyapustin, A., et al. (2010), Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign, Atmos. Chem. Phys., 10, 4359-4375, doi:10.5194/acp-10-4359-2010.
Co-Authored Publications:
- Wei, J., et al. (2024), Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study.
- Hammer, M. S., et al. (2023), Assessment of the impact of discontinuity in satellite instruments and retrievals on global PM2.5 estimates, Remote Sensing of Environment, 294, 113624, doi:10.1016/j.rse.2023.113624.
- Marshak, A., et al. (2023), Editorial: DSCOVR EPIC/NISTAR: 5Years of Observing Earth From the First Lagrangian Point, 5 Years of Observing Earth From the First Lagrangian Point The Deep Space Climate Observatory (DSCOVR) was launched in February 2015 to a Sun-Earth, Lagrange-1, orbit, doi:10.3389/frsen.2022.963660.
- van Donkelaar, A., et al. (2022), Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty, Environ. Sci. Technol., doi:10.1021/acs.est.1c05309.
- Epic:, V. 2. M. A., et al. (2021), Atmospheric Correction of DSCOVR, Front. Remote Sens., 2, 748362, doi:10.3389/frsen.2021.748362.
- Hammer, M. S., et al. (2021), The Authors, some Effects of COVID-19 lockdowns on fine particulate rights reserved; exclusive licensee matter concentrations American Association for the Advancement of Science. No claim to, Hammer et al., Sci. Adv., 7, eabg7670.
- Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., 21, 14427-14469, doi:10.5194/acp-21-14427-2021.
- Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., doi:10.5194/acp-2021-223.
- Hammer, M. S., et al. (2020), Improved Global Estimates of Fine Particulate Matter Concentrations and Trends Derived from Updated Satellite Retrievals, Modeling Advances, and Additional Ground-Based Monitors, Environ. Sci. Tech., 54, 7879-7890, doi:10.1021/acs.est.0c01764.
- Sogacheva, L., et al. (2020), Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031-2056, doi:10.5194/acp-20-2031-2020.
- Ye, X., et al. (2020), Assessment of Satellite AOD during the 2020 Wildfire Season in the Western U.S., Wildfire Season in the Western U.S.. Remote Sens., 2022, 6113, doi:10.3390/rs14236113.
- Chatfield, R., et al. (2019), Satellite Mapping of PM2.5 Episodes in the Wintertime San Joaquin Valley: A “Static” Model Using Column Water Vapor, Atmos. Chem. Phys., doi:10.5194/acp-2019-262.
- Chowdhury, S., et al. (2019), Tracking ambient PM2.5 build-up in Delhi national capital region during the dry T season over 15 years using a high-resolution (1 km) satellite aerosol dataset, Atmos. Environ., 204, 142-150, doi:10.1016/j.atmosenv.2019.02.029.
- Joiner, J., et al. (2018), Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data, doi:10.3390/rs10091346.
- Jovanovic, D. J. D. V., et al. (2018), Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA, Terms of Use, 12, 042603, doi:10.1117/1.JRS.12.042603.
- Levy, R., et al. (2018), Exploring systematic offsets between aerosol products from the two MODIS sensors, Atmos. Meas. Tech., 11, 4073-4092, doi:10.5194/amt-11-4073-2018.
- Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
- Sayer, A. M., et al. (2018), Validation of SOAR VIIRS Over-Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record, J. Geophys. Res., 123, doi:10.1029/2018JD029465.
- van Donkelaar, A., et al. (2016), Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. Sci. Technol., 50, 3762-3772, doi:10.1021/acs.est.5b05833.
- Veselovskii, I., et al. (2015), Characterization of forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar, Atmos. Chem. Phys., 15, 1647-1660, doi:10.5194/acp-15-1647-2015.
- Eck, T. F., et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633-11656, doi:10.5194/acp-14-11633-2014.
- Xu, X., et al. (2014), 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data, Atmos. Chem. Phys., 14, 6301-6314, doi:10.5194/acp-14-6301-2014.
- Yang, Y., et al. (2013), A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations, J. Quant. Spectrosc. Radiat. Transfer, 122, 141-149, doi:10.1016/j.jqsrt.2012.09.017.
- Knyazikhin, Y., et al. (2012), Hyperspectral remote sensing of foliar nitrogen content, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1210196109.
- Korkin, S., A. Lyapustin, and A. Marshak (2012), On the accuracy of double scattering approximation for atmospheric polarization computations, J. Quant. Spectrosc. Radiat. Transfer, 113, 172-181, doi:10.1016/j.jqsrt.2011.10.008.
- Gatebe, C., et al. (2005), Airborne Spectral Measurements of Ocean Directional Reflectance, J. Atmos. Sci., 62, 1072-1092.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.