Organization:
University of California, Berkeley
Business Address:
Department of Chemistry
Berkeley, CA 94720-1640
United StatesFirst Author Publications:
Co-Authored Publications:
- Day, D. A., et al. (2022), A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry, Atmos. Meas. Tech., 15, 459-483, doi:10.5194/amt-15-459-2022.
- Kenagy, H., et al. (2021), Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ, Environ. Sci. Technol., 55, 16326-16338, doi:10.1021/acs.est.1c05521.
- Kenagy, H., et al. (2021), Evidence of Nighttime Production of Organic Nitrates During SEAC4 RS, FRAPPÉ, and KORUS-AQ, Geophys. Res. Lett..
- Turner, A. J., et al. (2021), Observed Impacts of COVID-19 on Urban CO2 Emissions, Geophys. Res. Lett..
- Sparks, T., et al. (2019), Comparison of Airborne Reactive Nitrogen Measurements During WINTER, J. Geophys. Res., 124, 10,483-10,502, doi:10.1029/2019JD030700.
- Brune, W. H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
- Jaeglé, L., et al. (2018), Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign, J. Geophys. Res., 123, 12,368-12,393, doi:10.1029/2018JD029133.
- McDuffie, E., et al. (2018), ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res., 123, 12,994-13,015, doi:10.1029/2018JD029358.
- Romer, P., et al. (2018), Cite This: Environ. Sci. Technol. 2018, 52, 13738−13746 pubs.acs.org/est Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environ. Sci. Technol., doi:10.1021/acs.est.8b03861.
- Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
- Fisher, J. A., et al. (2016), Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991, doi:10.5194/acp-16-5969-2016.
- Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
- Pusede, S. E., et al. (2016), On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol, Atmos. Chem. Phys., 16, 2575-2596, doi:10.5194/acp-16-2575-2016.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
- Nault, B., et al. (2015), Measurements of CH3O2NO2 in the upper troposphere, Atmos. Meas. Tech., 8, 987-997, doi:10.5194/amt-8-987-2015.
- Washenfelder, R. A., et al. (2015), Biomass burning dominates brown carbon absorption in the rural southeastern United States, Geophys. Res. Lett., 42, 653-664, doi:0.1002/2014GL062444.
- Browne, E. C., et al. (2014), On the role of monoterpene chemistry in the remote continental boundary layer, Atmos. Chem. Phys., 14, 1225-1238, doi:10.5194/acp-14-1225-2014.
- Bertram, T. H., et al. (2013), On the export of reactive nitrogen from Asia: NOx partitioning and effects on ozone, Atmos. Chem. Phys., 13, 4617-4630, doi:10.5194/acp-13-4617-2013.
- Brent, L. C., et al. (2013), Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ, J. Atmos. Chem., doi:10.1007/s10874-013-9265-6.
- Browne, E. C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543-4562, doi:10.5194/acp-13-4543-2013.
- Rollins, A. W., et al. (2013), Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield, J. Geophys. Res., 118, 6651-6662, doi:10.1002/jgrd.50522.
- Browne, E. C., et al. (2011), Global and regional effects of the photochemistry of CH3O2NO2: evidence from ARCTAS, Atmos. Chem. Phys., 11, 4209-4219, doi:10.5194/acp-11-4209-2011.
- Russell, A. R., et al. (2011), A high spatial resolution retrieval of NO2 column densities from OMI: method and evaluation, Atmos. Chem. Phys., 11, 8543-8554, doi:10.5194/acp-11-8543-2011.
- Alvarado, M. J., et al. (2010), Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, doi:10.5194/acp-10-9739-2010.
- Perring, A., et al. (2010), Alkylnitrate production and persistence in Mexico City plumes, Atmos. Chem. Phys. Discuss., 9, 23755-23790.
- Perring, A., et al. (2010), The production and persistence of ΣRONO2 in the Mexico City plume, Atmos. Chem. Phys., 10, 7215-7229, doi:10.5194/acp-10-7215-2010.
- Cooper, O. R., et al. (2009), Summertime buildup and decay of lightning NOx and aged thunderstorm outflow above North America, J. Geophys. Res., 114, D01101, doi:10.1029/2008JD010293.
- McNaughton, C. S., et al. (2009), Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 8283-8308, doi:10.5194/acp-9-8283-2009.
- Perring, A., et al. (2009), A product study of the isoprene+NO3 reaction, Atmos. Chem. Phys., 9, 4945-4956, doi:10.5194/acp-9-4945-2009.
- Perring, A., et al. (2009), Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates, Atmos. Chem. Phys., 9, 1451-1463, doi:10.5194/acp-9-1451-2009.
- Bucsela, E. J., et al. (2008), Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI, J. Geophys. Res., 113, D16S31, doi:10.1029/2007JD008838.
- Day, D. A., P. J. Wooldridge, and R. C. Cohen (2008), Observations of the effects of temperature on atmospheric HNO3, ANs, PNs, and NOx: evidence for a temperature-dependent HOx source, Atmos. Chem. Phys., 8, 1867-1879, doi:10.5194/acp-8-1867-2008.
- Bertram, T. H., et al. (2007), Direct Measurements of the Convective Recycling of the Upper Troposphere, Science, 315, 816-820, doi:10.1126/science.1134548.
- Horowitz, L. W., et al. (2007), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res., 112, D12S08, doi:10.1029/2006JD007747.
- Hudman, R. C., et al. (2007), Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912.
- Kim, S., et al. (2007), Measurement of HO2NO2 in the free troposphere during the Intercontinental Chemical Transport Experiment–North America 2004, J. Geophys. Res., 112, D12S01, doi:10.1029/2006JD007676.
- Pérez, I. M., P. J. Wooldridge, and R. C. Cohen (2007), Laboratory evaluation of a novel thermal dissociation chemiluminescence method for in situ detection of nitrous acid, Atmos. Environ., 41, 3993-4001, doi:10.1016/j.atmosenv.2007.01.060.
- Singh, H., et al. (2007), Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere, J. Geophys. Res., 112, D12S04, doi:10.1029/2006JD007664.
- Cooper, O. R., et al. (2006), Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network, J. Geophys. Res., 111, D24S05, doi:10.1029/2006JD007306.
- Martin, R., et al. (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, J. Geophys. Res., 111, D15308, doi:10.1029/2005JD006680.
- Murphy, D., et al. (2004), Measurements of the sum of HO2NO2 and CH3O2NO2 in the remote troposphere, Atmos. Chem. Phys., 4, 377-384, doi:10.5194/acp-4-377-2004.
- Day, D. A., et al. (2003), On alkyl nitrates, O3, and the ‘‘missing NOy’’, J. Geophys. Res., 108, 4501, doi:10.1029/2003JD003685.
- Thornton, J. A., et al. (2003), Comparisons of in situ and long path measurements of NO2 in urban plumes, J. Geophys. Res., 108, 4496, doi:10.1029/2003JD003559.
- Wood, E. C., et al. (2003), Prototype for In Situ Detection of Atmospheric NO3 and N2O5 via Laser-Induced Fluorescence, Environ. Sci. Technol., 37, 5732-5738, doi:10.1021/es034507w.
- Cleary, P. A., P. J. Wooldridge, and R. C. Cohen (2002), Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion, Appl. Opt., 41, 6950-6956.
- Day, D. A., et al. (2002), A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J. Geophys. Res., 107, doi:10.1029/2001JD000779.
- Thornton, J. A., et al. (2002), Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume, J. Geophys. Res., 107, NO. D12, doi:10.1029/2001JD000932.
- Thornton, J. A., et al. (2000), Atmospheric NO2: In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios, Anal. Chem., 72, 528-539, doi:10.1021/ac9908905.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.