Organization
Naval Research Laboratory
Email
Business Address
Remote Sensing Division
Code 7227
4555 Overlook Ave. SW
Washington, DC 20375
United States
First Author Publications
-
Nedoluha, G., et al. (2024), The Spread of the Hunga Tonga H2O Plume in the Middle Atmosphere Over the First Two Years Since Eruption, J. Geophys. Res., 129, e2024JD040907, doi:10.1029/2024JD040907.
-
Nedoluha, G., et al. (2023), Mesospheric water vapor in 2022, J. Geophys. Res., 128, e2023JD039196, doi:10.1029/2023JD039196.
-
Nedoluha, G., et al. (2023), Measurements of stratospheric water vapor at Mauna Loa and the effect of the Hunga Tonga eruption, J. Geophys. Res., 128, e2022JD038100, doi:10.1029/2022JD038100.
-
Nedoluha, G., et al. (2022), Measurements of mesospheric water vapor from 1992 to 2021 at three stations from the Network for the Detection of Atmospheric Composition Change, J. Geophys. Res., 127, e2022JD037227, doi:10.1029/2022JD037227.
-
Nedoluha, G., et al. (2020), Initial results and diurnal variations measured by a new microwave stratospheric ClO instrument at Mauna Kea, J. Geophys. Res., 125, e2020JD033097, doi:10.1029/2020JD033097.
-
Nedoluha, G., et al. (2017), The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements, Atmos. Chem. Phys., 17, 14543-14558, doi:10.5194/acp-17-14543-2017.
-
Nedoluha, G., et al. (2016), 20 years of ClO measurements in the Antarctic lower stratosphere, Atmos. Chem. Phys., 16, 10725-10734, doi:10.5194/acp-16-10725-2016.
-
Nedoluha, G., et al. (2015), The decrease in mid-stratospheric tropical ozone since 1991, Atmos. Chem. Phys., 15, 4215-4224, doi:10.5194/acp-15-4215-2015.
-
Nedoluha, G., et al. (2015), Unusual stratospheric ozone anomalies observed in 22 years of measurements from Lauder, New Zealand, Atmos. Chem. Phys., 15, 6817-6826, doi:10.5194/acp-15-6817-2015.
-
Nedoluha, G., et al. (2013), Validation of long-term measurements of water vapor from the midstratosphere to the mesosphere at two Network for the Detection of Atmospheric Composition Change sites, J. Geophys. Res., 118, 934-942, doi:10.1029/2012JD018900.
-
Nedoluha, G., et al. (2011), Ground‐based measurements of ClO from Mauna Kea and intercomparisons with Aura and UARS MLS, J. Geophys. Res., 116, D02307, doi:10.1029/2010JD014732.
-
Nedoluha, G., et al. (2011), Ground‐based microwave measurements of water vapor from the midstratosphere to the mesosphere, J. Geophys. Res., 116, D02309, doi:10.1029/2010JD014728.
-
Nedoluha, G., et al. (2009), Water vapor measurements in the mesosphere from Mauna Loa over solar cycle 23, J. Geophys. Res., 114, D23303, doi:10.1029/2009JD012504.
-
Nedoluha, G., et al. (2007), A comparison of middle atmospheric water vapor as measured by WVMS, EOS-MLS, and HALOE, J. Geophys. Res., 112, D24S39, doi:10.1029/2007JD008757.
-
Nedoluha, G., et al. (2007), Antarctic dehydration 1998–2003: Polar Ozone and Aerosol Measurement III (POAM) measurements and Integrated Microphysics and Aerosol Chemistry on Trajectories (IMPACT) results with four meteorological models, J. Geophys. Res., 112, D07305, doi:10.1029/2006JD007414.
-
Nedoluha, G., et al. (2003), An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM, J. Geophys. Res., 108, 4391, doi:10.1029/2002JD003332.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Kiefer, M., et al. (2023), The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records, Atmos. Meas. Tech., 16, 4589-4642, doi:10.5194/amt-16-4589-2023.
-
Godin-Beekmann, S., et al. (2022), Updated trends of the stratospheric ozone vertical distribution in the 60° S-60° N latitude range based on the LOTUS regression model, Atmos. Chem. Phys., 22, 11657-11673, doi:10.5194/acp-22-11657-2022.
-
Klekociuk, A.R., et al. (2022), The Antarctic ozone hole during 2020, Journal of Southern Hemisphere Earth Systems Science, 72, 19-37.
-
Read, W.G., et al. (2022), The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity, Atmos. Meas. Tech., 15, 3377-3400, doi:10.5194/amt-15-3377-2022.
-
Bernet, L., et al. (2021), Validation and trend analysis of stratospheric ozone data from ground-based observations at Lauder, New Zealand, Remote Sens., 13, 109, doi:10.3390/rs13010109.
-
Klekociuk, A.R., et al. (2021), The Antarctic ozone hole during 2018 and 2019, Journal of Southern Hemisphere Earth Systems Science, 71, 66-91, doi:10.1071/ES20010.
-
Livesey, N.J., et al. (2021), Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends, Atmos. Chem. Phys., 21, 15409-15430, doi:10.5194/acp-21-15409-2021.
-
Sauvageat, E., et al. (2021), Comparison of Three High Resolution Real-Time Spectrometers for Microwave Ozone Profiling Instruments, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10045-10056, doi:10.1109/JSTARS.2021.3114446.
-
Barras, M.E., et al. (2020), Study of the dependence of long-term stratospheric ozone trends on local solar time, Atmos. Chem. Phys., 20, 8453-8471, doi:10.5194/acp-20-8453-2020.
-
Kablick, G.P., et al. (2020), Australian pyroCb smoke generates synoptic‐scale stratospheric anticyclones, Geophys. Res. Lett., 47, e2020GL088101., doi:10.1029/2020GL088101.
-
Lossow, S., et al. (2019), The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites, Atmos. Meas. Tech., 12, 2693-2732, doi:10.5194/amt-12-2693-2019.
-
Smale, D., et al. (2019), Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica (77.8°S, 166.7°E) during the, Tellus, 2021, 1933783, doi:10.1080/16000889.2021.1933783.
-
De Mazière, M., et al. (2018), The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives, Atmos. Chem. Phys., 18, 4935-4964, doi:10.5194/acp-18-4935-2018.
-
Khosrawi, F., et al. (2018), The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites, Atmos. Meas. Tech., 11, 4435-4463, doi:10.5194/amt-11-4435-2018.
-
Lossow, S., et al. (2017), The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites, Atmos. Meas. Tech., 10, 1111-1137, doi:10.5194/amt-10-1111-2017.
-
Steinbrecht, W., et al. (2017), An update on ozone profile trends for the period 2000 to 2016, Atmos. Chem. Phys., 17, 10675-10690, doi:10.5194/acp-17-10675-2017.
-
López-Comí, L., et al. (2016), Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, doi:10.5194/acp-16-14599-2016.
-
Lainer, M., et al. (2015), Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments, Atmos. Chem. Phys., 15, 9711-9730, doi:10.5194/acp-15-9711-2015.
-
Connor, B.J., et al. (2013), Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012, Atmos. Chem. Phys., 13, 8643-8650, doi:10.5194/acp-13-8643-2013.
-
Gomez, R.M., et al. (2012), The fourth-generation Water Vapor Millimeter-Wave Spectrometer, Radio Sci., 47, RS1010, doi:10.1029/2011RS004778.
-
Stiller, G.P., et al. (2012), Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements, Atmos. Meas. Tech., 5, 289-320, doi:10.5194/amt-5-289-2012.
-
Leblanc, T., et al. (2011), Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results, Atmos. Meas. Tech., 4, 2579-2605, doi:10.5194/amt-4-2579-2011.
-
Haefele, A., et al. (2009), Validation of ground-based microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor, J. Geophys. Res., 114, D23305, doi:10.1029/2009JD011997.
-
Alfred, J., et al. (2007), Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter, Atmos. Chem. Phys., 7, 2151-2163.
-
Lambert, A., et al. (2007), Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements, J. Geophys. Res., 112, D24S36, doi:10.1029/2007JD008724.
-
Benson, C.M., et al. (2006), Polar stratospheric clouds in the 1998–2003 Antarctic vortex: Microphysical modeling and Polar Ozone and Aerosol Measurement (POAM) III observations, J. Geophys. Res., 111, D18206, doi:10.1029/2005JD006948.
-
Benson, C.M., et al. (2006), Microphysical modeling of southern polar dehydration during the 1998 winter and comparison with POAM III observations, J. Geophys. Res., 111, D07201, doi:10.1029/2005JD006506.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.