Organization:
National Center for Atmospheric Research
Co-Authored Publications:
- Brune, W. H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
- Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
- Decker, Z., et al. (2021), Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke, Environ. Sci. Technol., 55, 15646-15657, doi:10.1021/acs.est.1c03803.
- Decker, Z., et al. (2021), Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293-16317, doi:10.5194/acp-21-16293-2021.
- Schroeder, J. R., et al. (2020), Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elem Sci Anth, 8, doi:10.1525/elementa.400.
- Sparks, T., et al. (2019), Comparison of Airborne Reactive Nitrogen Measurements During WINTER, J. Geophys. Res., 124, 10,483-10,502, doi:10.1029/2019JD030700.
- Jaeglé, L., et al. (2018), Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign, J. Geophys. Res., 123, 12,368-12,393, doi:10.1029/2018JD029133.
- Shah, V., et al. (2018), Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States, Proc. Natl. Acad. Sci., 115, 8110-8115, doi:10.1073/pnas.1803295115.
- Zhang, Y., et al. (2016), Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations, J. Geophys. Res., 121, doi:10.1002/2015JD024203.
- Spencer, K. M., et al. (2009), Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid, Atmos. Chem. Phys., 9, 3697-3707, doi:10.5194/acp-9-3697-2009.
- Ray, E., et al. (2004), Evidence of the effect of summertime midlatitude convection on the subtropical lower stratosphere from CRYSTAL-FACE tracer measurements, J. Geophys. Res., 109, D18304, doi:10.1029/2004JD004655.
- Ridley, B., et al. (2004), Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere, J. Geophys. Res., 109, D17305, doi:10.1029/2004JD004769.
- Ridley, B., et al. (1992), Measurements and Model Simulations of the Photostationary State During the Mauna Loa Observatory Photochemistry Experiment: Implications for Radical Concentrations and Ozone Production and Loss Rates, J. Geophys. Res., 97, 10,375-10.
- Carroll, M. A., et al. (1990), Aircraft Measurements of NOx Over the Eastern Pacific and Continental United States and Implications for Ozone Production, J. Geophys. Res., D7, 10,205-10.
- Hübler, G., et al. (1990), Redistribution of Reactive Odd Nitrogen in the Lower Arctic Stratosphere, Geophys. Res. Lett., 17, 453-456.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.