Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Fall vortex ozone as a predictor of springtime total ozone at high northern...

Kawa, S. R., P. Newman, R. Stolarski, and R. Bevilacqua (2005), Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes, Atmos. Chem. Phys., 5, 1655-1663, doi:10.5194/acp-5-1655-2005.
Abstract: 

Understanding the impact of atmospheric dynamical variability on observed changes in stratospheric O3 is a key to understanding how O3 will change with future climate dynamics and trace gas abundances. In this paper we examine the linkage between interannual variability in total column O3 at northern high latitudes in March and lower-tomid stratospheric vortex O3 in the prior November. We find that these two quantities are significantly correlated in the years available from TOMS, SBUV, and POAM data (1978– 2004). Additionally, we find that the increase in March O3 variability from the 1980s to years post-1990 is also seen in the November vortex O3 , i.e., interannual variability in both quantities is much larger in the later years. The cause of this correlation is not clear, however. Interannual variations in March total O3 are known to correspond closely with variations in winter stratospheric wave driving consistent with the effects of varying residual circulation, temperature, and chemical loss. Variation in November vortex O3 may also depend on dynamical wave activity, but the dynamics in fall are less variable than in winter and spring. We do not find significant correlations of dynamic indicators for November such as temperature, heat flux, or polar average total O3 with the November vortex O3 , nor with dynamical indicators later in winter and spring that might lead to a connection to March. We discuss several potential hypotheses for the observed correlation but do not find strong evidence for any considered mechanism. We present the observations as a phenomenon whose understanding may improve our ability to predict the dependence of O3 on changing dynamics and chemistry.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)