Organization
University of New Hampshire
First Author Publications
-
Dibb, J. (2019), ATom: Measurements of Soluble Acidic Gases and Aerosols (SAGA), Ornl Daac, doi:10.3334/ORNLDAAC/1748.
-
Dibb, J., et al. (2003), Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B, J. Geophys. Res., 108, 8815, doi:10.1029/2002JD003111.
-
Dibb, J., et al. (1999), Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics, J. Geophys. Res., 104, 5785-5800, doi:10.1029/1998JD100001.
-
Dibb, J., et al. (1997), Distributions of beryllium 7 and lead 2109, and soluble aerosol-associated ionic species over the western Pacific: PEM West B, February-March 1994, J. Geophys. Res., 102, 28287-28302, doi:10.1029/96JD02981.
-
Dibb, J., et al. (1996), Asian influence over the western north Pacific during the Fall season: Inferences from lead-210, soluble ionic species and ozone, J. Geophys. Res., 101.D1, 1779-1792.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
-
Siemens, K.S.A., et al. (2023), Probing Atmospheric Aerosols by Multimodal Mass Spectrometry Techniques: Revealing Aging Characteristics of Its Individual Molecular Components, Anal. Chem., 2498, 2498−2510, doi:10.1021/acsearthspacechem.3c00228.
-
Tang, Y., et al. (2023), Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign, Geosci. Model. Dev., doi:10.5194/gmd-15-7977-2022.
-
Travis, K.R., et al. (2023), Emission Factors for Crop Residue and Prescribed Fires in the Eastern US during FIREX-AQ, J. Geophys. Res., 128, e2023JD039309, doi:10.1029/2023JD039309.
-
Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
-
Zhu, H., et al. (2023), Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., doi:10.5194/acp-23-5023-2023.
-
Adachi, K., et al. (2022), Fine ash-bearing particles as a major aerosol component in biomass burning smoke, J. Geophys. Res., 127, e2021JD035657, doi:10.1029/2021JD035657.
-
Hilario, M., et al. (2022), Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations, Geophys. Res. Lett..
-
Kacenelenbogen, M.S., et al. (2022), Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?, Atmos. Chem. Phys., doi:10.5194/acp-22-3713-2022.
-
Kim, D., et al. (2022), Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol, Atmos. Chem. Phys., doi:10.5194/acp-22-805-2022.
-
Travis, K.R., et al. (2022), Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ, Atmos. Chem. Phys., doi:10.5194/acp-22-7933-2022.
-
Zeng, L., et al. (2022), Characteristics and evolution of brown carbon in western United States wildfires, Atmos. Chem. Phys., doi:10.5194/acp-22-8009-2022.
-
Zeng, L., et al. (2022), Characteristics and evolution of brown carbon in western United States wildfires, Atmos. Chem. Phys., doi:10.5194/acp-22-8009-2022.
-
Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
-
Chen, X., et al. (2021), HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations, ACS Earth Space Chem., doi:10.1021/acsearthspacechem.1c00049.
-
Guo, H., et al. (2021), The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission, Atmos. Meas. Tech., 14, 3631-3655, doi:10.5194/amt-14-3631-2021.
-
Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
-
Schueneman, M., et al. (2021), Aerosol pH Indicator and Organosulfate Detectability from Aerosol Mass Spectrometry Measurements, Atmos. Meas. Tech., doi:10.5194/amt-2020-339.
-
Schueneman, M., et al. (2021), Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements, Atmos. Meas. Tech., 14, 2237-2260, doi:10.5194/amt-14-2237-2021.
-
Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
-
Wiggins, E.B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
-
Zeng, L., et al. (2021), Assessment of online water-soluble brown carbon measuring systems for aircraft sampling, Atmos. Meas. Tech., 14, 6357-6378, doi:10.5194/amt-14-6357-2021.
-
Zhai, S., et al. (2021), Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations, Atmos. Chem. Phys., 21, 16775-16791, doi:10.5194/acp-21-16775-2021.
-
Heim, E.W., et al. (2020), Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea, Atmos. Environ., 224, 117305, doi:10.1016/j.atmosenv.2020.117305.
-
Nault, B., et al. (2020), Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples, Atmos. Meas. Tech., 13, 6193-6213, doi:10.5194/amt-13-6193-2020.
-
Saide Peralta, P., et al. (2020), Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455-6478, doi:10.5194/acp-20-6455-2020.
-
Zeng, L., et al. (2020), Global Measurements of Brown Carbon and Estimated Direct Radiative Effects, Geophys. Res. Lett., 47, doi:10.1029/2020GL088747.
-
Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
-
Froyd, K., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
-
Haskins, J.D., et al. (2019), Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants, Geophys. Res. Lett., 46, 14,826-14,835, doi:10.1029/2019GL085498.
-
Murphy, D., et al. (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, doi:10.5194/acp-19-4093-2019.
-
Haskins, J.D., et al. (2018), Wintertime Gas-Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean, J. Geophys. Res., 123, 12,897-12,916, doi:10.1029/2018JD028786.
-
Li, J., et al. (2018), Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States, Atmos. Chem. Phys., 18, 2341-2361, doi:10.5194/acp-18-2341-2018.
-
McDuffie, E., et al. (2018), ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res., 123, 12,994-13,015, doi:10.1029/2018JD029358.
-
Nault, B., et al. (2018), Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769-17800, doi:10.5194/acp-18-17769-2018.
-
Romer, P., et al. (2018), Cite This: Environ. Sci. Technol. 2018, 52, 13738−13746 pubs.acs.org/est Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environ. Sci. Technol., doi:10.1021/acs.est.8b03861.
-
Schroder, J.C., et al. (2018), Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER, J. Geophys. Res., 123, 7771-7796, doi:10.1029/2018JD028475.
-
Wofsy, S.C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
-
Zhang, Y., et al. (2017), Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere, Nature Geoscience, 10, 486, doi:10.1038/NGEO2960.
-
Cai, C., et al. (2016), Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity, Atmos. Environ., 128, 28-44, doi:10.1016/j.atmosenv.2015.12.031.
-
Corr, C.A., et al. (2016), Observational evidence for the convective transport of dust over the Central United States, J. Geophys. Res., 121, doi:10.1002/2015JD023789.
-
Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
-
Ridley, A., et al. (2016), Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008 Matthew J. Alvarado1 , Chantelle R. Lonsdale1 , Helen L. Macintyre2,a , Huisheng Bian3,4 , Mian Chin4 , David, Atmos. Chem. Phys., 16, 9435-9455, doi:10.5194/acp-16-9435-2016.
-
Toon, B., et al. (2016), Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission, J. Geophys. Res., 121, 4967-5009, doi:10.1002/2015JD024297.
-
Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
-
Emmons, L., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
-
Forrister, H., et al. (2015), Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 4623-4630, doi:10.1002/2015GL063897.
-
Liu, J., et al. (2015), Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing, Atmos. Chem. Phys., 15, 7841-7858, doi:10.5194/acp-15-7841-2015.
-
Saide Peralta, P., et al. (2015), Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion, Geophys. Res. Lett., 42, 3609-3618, doi:10.1002/2015GL063737.
-
Law, K., et al. (2014), Arctic Air Pollution: New Insights from POLARCAT-IPY, Bull. Am. Meteorol. Soc.(submitted).
-
Liu, J., et al. (2014), Brown carbon in the continental troposphere, Geophys. Res. Lett., 41, 2191-2195, doi:10.1002/2013GL058976.
-
Rutter, A.P., et al. (2014), The reduction of HNO3 by volatile organic compounds emitted by motor vehicles, Atmos. Environ., 87, 200-206, doi:10.1016/j.atmosenv.2014.01.056.
-
Choi, S., et al. (2012), Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285, doi:10.5194/acp-12-1255-2012.
-
Corr, C.A., et al. (2012), Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS, Atmos. Chem. Phys., 12, 10505-10518, doi:10.5194/acp-12-10505-2012.
-
Dupont, R., et al. (2012), Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign, Atmos. Chem. Phys., 12, 169-188, doi:10.5194/acp-12-169-2012.
-
Koo, J.-H., et al. (2012), Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations, Atmos. Chem. Phys., 12, 9909-9922, doi:10.5194/acp-12-9909-2012.
-
Liao, J., et al. (2012), Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS, Atmos. Chem. Phys., 12, 1327-1338, doi:10.5194/acp-12-1327-2012.
-
Olson, J., et al. (2012), An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos. Chem. Phys., 12, 6799-6825, doi:10.5194/acp-12-6799-2012.
-
Carn, S.A., et al. (2011), In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4, J. Geophys. Res., 116, D00J24, doi:10.1029/2010JD014718.
-
Fisher, J.A., et al. (2011), Sources, distribution, and acidity of sulfateeammonium aerosol in the Arctic in winterespring, Atmos. Environ., 45, 7301-7318, doi:10.1016/j.atmosenv.2011.08.030.
-
Huang, M., et al. (2011), Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period, Atmos. Chem. Phys., 11, 3173-3194, doi:10.5194/acp-11-3173-2011.
-
Adhikary, B., et al. (2010), A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091-2115, doi:10.5194/acp-10-2091-2010.
-
Adhikary, B., et al. (2010), Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign, Atmos. Chem. Phys. Discuss., 10, 2091-2115.
-
Avery, M., et al. (2010), Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, doi:10.1029/2009JD013450.
-
Drury, E., et al. (2010), Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA‐AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources, J. Geophys. Res., 115, D14204, doi:10.1029/2009JD012629.
-
Fairlie, T.D., et al. (2010), Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999-4012, doi:10.5194/acp-10-3999-2010.
-
Jacob, D.J., et al. (2010), The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191-5212, doi:10.5194/acp-10-5191-2010.
-
Perring, A., et al. (2010), Alkylnitrate production and persistence in Mexico City plumes, Atmos. Chem. Phys. Discuss., 9, 23755-23790.
-
Perring, A., et al. (2010), The production and persistence of ΣRONO2 in the Mexico City plume, Atmos. Chem. Phys., 10, 7215-7229, doi:10.5194/acp-10-7215-2010.
-
Salawitch, R., et al. (2010), A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, doi:10.1029/2010GL043798.
-
Scheuer, E., et al. (2010), Evidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign, J. Geophys. Res., 115, D00J03, doi:10.1029/2009JD012716.
-
McNaughton, C.S., et al. (2009), Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 8283-8308, doi:10.5194/acp-9-8283-2009.
-
Perring, A., et al. (2009), Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates, Atmos. Chem. Phys., 9, 1451-1463, doi:10.5194/acp-9-1451-2009.
-
Thornhill, L., et al. (2008), The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA, J. Geophys. Res., 113, D08201, doi:10.1029/2007JD008666.
-
van Donkelaar, A., et al. (2008), Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada, Atmos. Chem. Phys., 8, 2999-3014, doi:10.5194/acp-8-2999-2008.
-
Zhang, L., et al. (2008), Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117-6136, doi:10.5194/acp-8-6117-2008.
-
Bertram, T.H., et al. (2007), Direct Measurements of the Convective Recycling of the Upper Troposphere, Science, 315, 816-820, doi:10.1126/science.1134548.
-
Clarke, A., et al. (2007), Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response, J. Geophys. Res., 112, D12S18, doi:10.1029/2006JD007777.
-
Fairlie, T.D., et al. (2007), Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment-North America, J. Geophys. Res., 112, D16S90, doi:10.1029/2006JD007923.
-
Hudman, R.C., et al. (2007), Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912.
-
Liang, Q., et al. (2007), Summertime influence of Asian pollution in the free troposphere over North America, J. Geophys. Res., 112, D12S11, doi:10.1029/2006JD007919.
-
Pierce, B., et al. (2007), Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America, J. Geophys. Res., 112, D12S21, doi:10.1029/2006JD007722.
-
Santee, M., et al. (2007), Validation of the Aura Microwave Limb Sounder HNO3 measurements, J. Geophys. Res., 112, D24S40, doi:10.1029/2007JD008721.
-
Singh, H., et al. (2007), Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere, J. Geophys. Res., 112, D12S04, doi:10.1029/2006JD007664.
-
Talbot, R., et al. (2007), Total depletion of Hg° in the upper troposphere - lower stratosphere, Geophys. Res. Lett., 34, 10, doi:28.
-
Liu, H., et al. (2004), Constraints on the sources of tropospheric ozone from 210Pb-7Be-O3 correlations, J. Geophys. Res., 109, D07306, doi:10.1029/2003JD003988.
-
Blake, N.J., et al. (2003), Carbonyl sulfide (OCS) and carbon disulfide (CS2): Large scale distributions and emissions from Asia during TRACE-P, J. Geophys. Res., doi:10.1029/2003JD004259.
-
Browell, E., et al. (2003), Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring, J. Geophys. Res., 108, 8805.
-
Cantrell, C.A., et al. (2003), Steady state free radical budgets and ozone photochemistry during TOPSE, J. Geophys. Res., 108, 8361, doi:10.1029/2002JD002198.
-
Eisele, F., et al. (2003), Summary of measurement intercomparisons during TRACE-P, J. Geophys. Res., 108, 8791, doi:10.1029/2002JD003167.
-
Ma, Y., et al. (2003), Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia, J. Geophys. Res., 109, 10.
-
Russo, R.S., et al. (2003), Chemical composition of Asian continental outflow over the western Pacific: Results from Transport and Chemical Evolution over the Pacific (TRACE-P), J. Geophys. Res., 108, 8804, doi:10.1029/2002JD003184.
-
Scheuer, E., et al. (2003), Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE, J. Geophys. Res., 108, 8370, doi:10/1029/2001JD001364.
-
Talbot, R., et al. (2003), Reactive nitrogen in Asian continental outflow over the western Pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission, J. Geophys. Res., 108, 8803, doi:10.1029/2002JD003129.
-
Schultz, M., et al. (2000), Chemical NOx budget in the upper troposphere over the tropical South Pacific, J. Geophys. Res., 105, 6669-6679.
-
Fenn, M.A., et al. (1999), Ozone and aerosol distributions and airmass characteristics over the South Pacific during the burning season, J. Geophys. Res., 104, 16,167-16.
-
Talbot, R., et al. (1999), Influence of biomass combustion emissions on the distribution of acidic trace gases over the southern Pacific basin during austral springtime, J. Geophys. Res., 104, 5623-5634.
-
Talbot, R., et al. (1999), Reactive nitrogen budget during the SONEX mission, Geophys. Res. Lett., 26, 3057-3060.
-
Talbot, R., et al. (1998), Influence of vertical transport on free tropospheric aerosols over the central USA in springtime, Geophys. Res. Lett., 25, 1367-1370, doi:10.1029/98GL00184.
-
Talbot, R., et al. (1997), Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West-B, J. Geophys. Res., 102, 28,255-28.
-
Newell, R.E., et al. (1996), Atmospheric sampling of supertyphoon Mireille with the NASA DC-8 aircraft on September 27, 1991, during PEM-West A, J. Geophys. Res., 101.D1, 1853-1872.
-
Talbot, R., et al. (1996), Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September-October 1991: Results from PEM-West A, J. Geophys. Res., 101.D1, 1713-1725.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.