Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

Raman Airborne Spectroscopic Lidar (RASL)

Status

Operated By: 
PI

The Raman Airborne Spectroscopic Lidar (RASL) consists of a 15W ultraviolet laser, a 24-inch (61-centimeter) diameter Dahl-Kirkham telescope, a custom receiver package, and a structure to mount these components inside an aircraft. Both the DC-8 at NASA Dryden and the P-3 at NASA/Wallops are aircrafts that could carry RASL. The system is unique because it requires the largest window ever put into either of these aircraft. A fused-silica window, diameter of 27 inches (68.6 centimeters) and 2.375 inches (6 centimeters) thick is needed to withstand the pressure and temperature differentials at a 50,000-foot (15.2-kilometer) altitude.

In June through August of 2007, RASL flew numerous times on board a King Air B-200 aircraft out of Bridgewater, VA, in support of the 2007 Water Vapor Validation Experiments (WAVES) campaign. The WAVES campaign was a series of field experiments to validate satellite measurements. RASL data, along with data from ground-based and balloon-borne instruments, were used to assess the CALIPSO and TES instruments and for studies of mesoscale water vapor variability. During the test flights, RASL produced the first-ever simultaneous measurements of tropospheric water vapor mixing ratio and aerosol extinction from an airborne platform.

Instrument Type: 
Aircraft: 
Instrument Team: