Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
The authors present a new method to derive both the broadband and spectral longwave observation-based cloud radiative kernels (CRKs) using cloud radiative forcing (CRF) and cloud fraction (CF) for different cloud types using multisensor A-Train observations and MERRA data collocated on the pixel scale. Both observation-based CRKs and model-based CRKs derived from the Fu–Liou radiative transfer model are shown. Good agreement between observation- and model-derived CRKs is found for optically thick clouds. For optically thin clouds, the observation-based CRKs show a larger radiative sensitivity at TOA to cloud-cover change than model-derived CRKs. Four types of possible uncertainties in the observed CRKs are investigated: 1) uncertainties in Moderate Resolution Imaging Spectroradiometer cloud properties, 2) the contributions of clearsky changes to the CRF, 3) the assumptions regarding clear-sky thresholds in the observations, and 4) the assumption of a single-layer cloud. The observation-based CRKs show the TOA radiative sensitivity of cloud types to unit cloud fraction change as observed by the A-Train. Therefore, a combination of observation-based CRKs with cloud changes observed by these instruments over time will provide an estimate of the short-term cloud feedback by maintaining consistency between CRKs and cloud responses to climate variability.