Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


High-frequency monitoring of anomalous methane point sources with multispectral...

Varon, D. J., D. Jervis, J. McKeever, I. Spence, D. Gains, and D. J. Jacob (2021), High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations, Atmos. Meas. Tech., 14, 2771-2785, doi:10.5194/amt-14-2771-2021.

We demonstrate the capability of the Sentinel2 MultiSpectral Instrument (MSI) to detect and quantify anomalously large methane point sources with fine pixel resolution (20 m) and rapid revisit rates (2–5 d). We present three methane column retrieval methods that use shortwave infrared (SWIR) measurements from MSI spectral bands 11 (∼ 1560–1660 nm) and 12 (∼ 2090–2290 nm) to detect atmospheric methane plumes. The most successful is the multiband–multi-pass (MBMP) method, which uses a combination of the two bands and a non-plume reference observation to retrieve methane columns. The MBMP method can quantify point sources down to about 3 t h−1 with a precision of ∼ 30 %–90 % (1σ ) over favorable (quasi-homogeneous) surfaces. We applied our methods to perform high-frequency monitoring of strong methane point source plumes from a well-pad device in the Hassi Messaoud oil field of Algeria (October 2019 to August 2020, observed every 2.5 d) and from a compressor station in the Korpezhe oil and gas field of Turkmenistan (August 2015 to November 2020, observed every 5 d). The Algerian source was detected in 93 % of cloud-free scenes, with source rates ranging from 2.6 to 51.9 t h−1 (averaging 9.3 t h−1 ) until it was shut down by a flare lit in August 2020. The Turkmen source was detected in 40 % of cloud-free scenes, with variable intermittency and a 9-month shutdown period in March–December 2019 before it resumed; source rates ranged from 3.5 to 92.9 t h−1 (averaging 20.5 t h−1 ). Our source-rate retrievals for the Korpezhe point source are in close agreement with GHGSat-D satellite observations for February 2018 to January 2019, but provide much higher observation density. Our methods can be readily applied to other satellite instruments with coarse SWIR spectral bands, such as Landsat-7 and Landsat-8. High-frequency satellite-based detection of anomalous methane point sources as demonstrated here could enable prompt corrective action to help reduce global methane emissions.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Carbon Cycle & Ecosystems Program (CCEP)
Funding Sources: 
Carbon Monitoring System