Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

COLLOQUIUM INTRODUCTION Improving our fundamental understanding of the role of...

The core information for this publication's citation.: 
Seinfeld, J. H., C. S. Bretherton, K. S. Carslaw, H. Coe, P. J. DeMott, E. J. Dunlea, G. Feingold, S. Ghan, A. Guenther, R. Kahn, I. Kraucunas, S. M. Kreidenweis, M. J. Molina, A. Nenes, J. E. Penner, K. A. Prather, V. Ramanathan, V. Ramaswamy, P. J. Rasch, A. R. Ravishankara, D. Rosenfeld, G. Stephens, and R. Wood (2016), COLLOQUIUM INTRODUCTION Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system, Proc. Natl. Acad. Sci., 113, doi:10.1073/pnas.1514043113.
Abstract: 

Clouds play a key role in Earth’s radiation budget, and aerosols serve as the seeds upon which cloud droplets form. Anthropogenic activity has led to an increase in aerosol particle concentrations globally and an increase in those particles that act as cloud condensation nuclei (CCN) and ice nucleating particles (INP). The effect of an increase in aerosols on cloud optical properties, and associated radiative forcing, is the most uncertain component of historical radiative forcing of Earth’s climate caused by greenhouse gases (GHGs) and aerosols. The Intergovernmental Panel on Climate Change (IPCC) AR5 assessment of climate forcing factors (Fig. S1) ascribes “high” confidence to the estimate of direct aerosol radiative forcing (mean

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Climate Variability and Change Program
Mission: 
EOS