The SOLVE website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

All weather IASI single field-of-view retrievals: case study – validation...

Zhou, D. K., W. Smith, A. Larar, Xu Liu, J. P. Taylor, P. Schlüssel, L. Strow, and S. A. Mango (2009), All weather IASI single field-of-view retrievals: case study – validation with JAIVEx data, Atmos. Chem. Phys., 9, 2241-2255, doi:10.5194/acp-9-2241-2009.
Abstract: 

Atmospheric thermodynamic parameters, such as atmospheric temperature and moisture profiles, cloud optical/microphysical properties, and surface properties are basic meteorological variables for weather forecasting. In addition, they are critical parameters in tropospheric chemistry studies. A physical, geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiances observed with satellite ultraspectral infrared sounders has been developed to determine simultaneously surface, atmospheric thermodynamic, and cloud microphysical parameters. A one-dimensional variational (1-D Var.) multivariable inverse solution of the radiative transfer equation is used to iteratively improve a background state defined by eigenvector regression. This algorithm has been applied to data from the Infrared Atmospheric Sounding Interferometer (IASI) on the EUMETSAT Metop-A satellite. The IASI retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, such as the NPOESS Airborne Sounder Testbed – Interferometer (NAST-I), in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

PDF of Publication: 
Download from publisher's website.
Research Program: 
New Investigator Program (NIP)