Electromagnetic scattering by densely packed particulate ice at radar wavelengths: exact theoretical results and remote-sensing implications

Mishchenko, M.I., and L. Liu (2009), Electromagnetic scattering by densely packed particulate ice at radar wavelengths: exact theoretical results and remote-sensing implications, Appl. Opt., 48, 2421-2426.
Abstract

We use the numerically exact superposition T-matrix method to compute electromagnetic scattering characteristics of a macroscopic volume of a discrete random medium filled with wavelength-sized spherical particles with a refractive index typical of water ice at centimeter wavelengths. Our analysis demonstrates relative strengths of various optical observables in terms of their potential remote-sensing content. In particular, it illustrates the importance of accounting for the forward-scattering interference effect in the interpretation of occultation measurements of planetary rings. We show that among the most robust indicators of the amount of multiple scattering inside a particulate medium are the crosspolarized scattered intensity, the same-helicity scattered intensity, and the circular polarization ratio. We also demonstrate that many predictions of the low-packing-density theories of radiative transfer and coherent backscattering are applicable, both qualitatively and semi-quantitatively, to densely packed media.

Research Program
Radiation Science Program (RSP)

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.