Warning message

Member access has been temporarily disabled. Please try again later.
The GLOPAC website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Aerosols that form subvisible cirrus at the tropical tropopause

Froyd, K., D. Murphy, P. Lawson, D. Baumgardner, and R. L. Herman (2010), Aerosols that form subvisible cirrus at the tropical tropopause, Atmos. Chem. Phys., 10, 209-218, doi:10.5194/acp-10-209-2010.
Abstract: 

The composition of residual particles from evaporated cirrus ice crystals near the tropical tropopause as well as unfrozen aerosols were measured with a single particle mass spectrometer. Subvisible cirrus residuals were predominantly composed of internal mixtures of neutralized sulfate with organic material and were chemically indistinguishable from unfrozen sulfate-organic aerosols. Ice residuals were also similar in size to unfrozen aerosol. Heterogeneous ice nuclei such as mineral dust were not enhanced in these subvisible cirrus residuals. Biomass burning particles were depleted in the residuals. Cloud probe measurements showing low cirrus ice crystal number concentrations were inconsistent with conventional homogeneous freezing. Recent laboratory studies provide heterogeneous nucleation scenarios that may explain tropopause level subvisible cirrus formation.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Upper Atmosphere Research Program (UARP)
Mission: 
CR-AVE