Organization
NASA Ames Research Center
Bay Area Environmental Research Institute
Email
Business Phone
Work
(650) 604-5535
Home
(209) 571-1921
Business Address
Mail Stop 245-5
Moffett Field, CA 94035
United States
First Author Publications
-
Dean-Day, J., et al. (2013), An intercomparison of the NASA DC-8 MMS with the NCAR G-V met system and nearby Vaisala GPS radiosondes, DC3 Science Team Meeting, Feb. 25-28, Boulder, CO(submitted).
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Gordon, A.E., et al. (2024), Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes, Atmos. Chem. Phys., doi:10.5194/acp-24-7591-2024.
-
Pan, L.L., et al. (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2318716121.
-
Cuchiara, G.C., et al. (2023), Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC 4RS Case Study, J. Geophys. Res..
-
Homeyer, C., et al. (2023), Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign, Geophys. Res. Lett..
-
June, N.A., et al. (2023), Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation, Atmos. Chem. Phys., doi:10.5194/acp-22-12803-2022.
-
Li, Y., et al. (2023), In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the, Atmos. Chem. Phys., 23, 15351-15364, doi:10.5194/acp-23-15351-2023.
-
Brock, C.A., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
-
Liu, S., et al. (2021), Sea spray aerosol concentration modulated by sea surface temperature, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2020583118.
-
Cuchiara, G.C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
-
Ryoo, J., et al. (2020), Terrain Trapped Airflows and Precipitation Variability during an Atmospheric River Event, J. Hydrometeorology, 21, 355-375, doi:10.1175/JHM-D-19-0040.1.
-
Ryoo, J., et al. (2019), Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements, Atmos. Meas. Tech., 12, 2949-2966, doi:10.5194/amt-12-2949-2019.
-
Wolfe, G.M., et al. (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.
-
Wolfe, G.M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
-
Katich, J.M., et al. (2018), ATom: Black Carbon Mass Mixing Ratios from ATom-1 Flights, Ornl Daac, doi:10.3334/ORNLDAAC/1618.
-
Wofsy, S., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Herman, R.L., et al. (2017), Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection, Atmos. Chem. Phys., 17, 6113-6124, doi:10.5194/acp-17-6113-2017.
-
Smith, J.B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
-
Kim, J., et al. (2016), Ubiquitous influence of waves on tropical high cirrus clouds, Geophys. Res. Lett., 43, 5895-5901, doi:10.1002/2016GL069293.
-
Wolfe, G.M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
-
Ueyama, R., et al. (2014), Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations, J. Geophys. Res., 119, 5299-5316, doi:10.1002/2013JD021381.
-
Garrett, T., et al. (2006), Convective formation of pileus cloud near the tropopause, Atmos. Chem. Phys., 6, 1185-1200, doi:10.5194/acp-6-1185-2006.
-
Jost, H., et al. (2004), In-situ observations of mid-latitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett., 31, L11101, doi:10.1029/2003GL019253.
-
Chan, ., et al. (1992), "A Case Study of the Mountain Lee Wave Event of January 6, Geophys. Res. Lett., 20, 2551-2554.
-
Chan, ., et al. (1990), Temperature and Wind Measurements and Model Atmospheres for the 1989 Airborne Arctic Stratospheric Expedition, Geophys. Res. Lett., 17, 341-344.
-
Chan, ., et al. (1989), Temperature and Horizontal Wind Measurements on the ER-2 Aircraft during the 1987 Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11,573-11.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.