Organization:
National Center for Atmospheric Research
First Author Publications:
- Buchholz, R., et al. (2022), New seasonal pattern of pollution emerges from changing North American wildfires, Nat Commun, 13, 2043, doi:10.1038/s41467-022-29623-8.
- Buchholz, R., et al. (2021), Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions, Remote Sensing of Environment, 256, 112275, doi:10.1016/j.rse.2020.112275.
- Buchholz, R., et al. (2018), Links Between Carbon Monoxide and Climate Indices for the Southern Hemisphere and Tropical Fire Regions, J. Geophys. Res., 123, 9786-9800, doi:10.1029/2018JD028438.
Co-Authored Publications:
- Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles, 37, e2023GB007804, doi:10.1029/2023GB007804.
- Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles.
- Gaubert, B., et al. (2023), Global Scale Inversions from MOPITT CO and MODIS AOD, Remote Sens., 15, 4813, doi:10.3390/rs15194813.
- Tang, W., et al. (2023), Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality research in Africa, Geosci. Model. Dev., doi:10.5194/gmd-16-6001-2023.
- Hamilton, D. S., et al. (2022), Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry, Ann. Rev. Mar. Sci., 14, 1-28, doi:10.1146/annurev-marine-031921-013612.
- Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
- Hedelius, J. K., et al. (2021), Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16 Years, J. Geophys. Res., 126, e2020JD033967, doi:10.1029/2020JD033967.
- Tang, W., et al. (2021), Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements, Atmos. Meas. Tech., 14, 4639-4655, doi:10.5194/amt-14-4639-2021.
- Gaubert, B., et al. (2020), Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617-14647, doi:10.5194/acp-20-14617-2020.
- Tang, W., et al. (2020), Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions, Atmos. Meas. Tech., 13, 1337-1356, doi:10.5194/amt-13-1337-2020.
- Hedelius, J. K., et al. (2019), Evaluation of MOPITT Version 7 joint TIR-NIR X-CO retrievals with TCCON, Atmos. Meas. Tech., 12, 5547-5572, doi:10.5194/amt-12-5547-2019.
- Ortega, I., et al. (2019), Tropospheric water vapor profiles obtained with FTIR: comparison with balloon-borne frost point hygrometers and influence on trace gas retrievals, Atmos. Meas. Tech., 12, 873-890, doi:10.5194/amt-12-873-2019.
- Tang, W., et al. (2019), Source Contributions to Carbon Monoxide Concentrations During KORUS‐AQ Based on CAM‐chem Model Applications, J. Geophys. Res..
- Gaubert, B., et al. (2016), Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition, J. Geophys. Res., 121, 7310-7343, doi:10.1002/2016JD024863.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.