Organization:
NOAA Earth System Research Laboratory
University of Colorado, Boulder
Cooperative Institute for Research in Environmental Sciences
First Author Publications:
- Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
- Hintsa, E., et al. (2010), First Results from UCATS during the GloPac 2010 Mission, American Geophysical Union, Fall Meeting 2010, abstract #A51B-0093.
- Hintsa, E., et al. (1999), On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer, J. Geophys. Res., 104, 8183-8189.
- Hintsa, E., et al. (1994), SPADE H2O Measurements and the Seasonal Cycle of Stratospheric Water Vapor, Geophys. Res. Lett., 21, 2559-2562.
Co-Authored Publications:
- Schuck, T. J., et al. (2024), The interhemispheric gradient of SF6 in the upper troposphere, Atmos. Chem. Phys., doi:10.5194/acp-24-689-2024.
- Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
- Krysztofiak, G., et al. (2023), N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018, Atmosphere, 14, 585, doi:10.3390/atmos14030585.
- Li, J., et al. (2023), A novel, cost-effective analytical method for measuring high-resolution vertical profiles of stratospheric trace gases using a gas chromatograph coupled with an electron capture detector, Atmos. Meas. Tech., 16, 2851-2863, doi:10.5194/amt-16-2851-2023.
- Hu, L., et al. (2022), Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017, Atmos. Chem. Phys., doi:10.5194/acp-22-2891-2022.
- Payne, V., et al. (2022), Satellite measurements of peroxyacetyl nitrate from the Cross-Track Infrared Sounder: comparison with ATom aircraft measurements, Atmos. Meas. Tech., 15, 3497-3511, doi:10.5194/amt-15-3497-2022.
- Gonzalez, Y., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
- Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
- Orbe, C., et al. (2021), Tropospheric Age-of-Air: Influence of SF6 Emissions on Recent Surface Trends and Model Biases, J. Geophys. Res., 126, e2021JD035451, doi:10.1029/2021JD035451.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Bourgeois, I., et al. (2020), Global-scale distribution of ozone in the remote troposphere from ATom and HIPPO airborne field missions., Atmos. Chem. Phys., doi:10.5194/acp-2020-315.
- Brune, W. H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
- Thames, A., et al. (2020), Missing OH reactivity in the global marine boundary layer, Atmos. Chem. Phys., 20, 4013-4029, doi:10.5194/acp-20-4013-2020.
- Travis, K., et al. (2020), Constraining remote oxidation capacity with ATom observations, Atmos. Chem. Phys., 20, 7753-7781, doi:10.5194/acp-20-7753-2020.
- Elkins, J. W., E. Hintsa, and F. Moore (2019), ATom: Measurements from the UAS Chromatograph for Atmospheric Trace Species (UCATS), Ornl Daac, doi:10.3334/ORNLDAAC/1750.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Jensen, E., et al. (2017), Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific, J. Geophys. Res., 122, 6094-6107, doi:10.1002/2017JD026632.
- Gao, R., et al. (2014), OH in the tropical upper troposphere and its relationships to solar radiation and reactive nitrogen, J Atmos Chem, 71, 55-64.
- Liss, P., et al. (2014), Short-lived trace gases in the surface ocean and the atmosphere, Ocean-Atmosphere Interactions of Gases and Particles. Berlin/Heidelberg: Springer Verlag, 1-54, doi:10.1007/978-3-642-25643-1_1.
- Waugh, D., et al. (2013), Tropospheric SF6: Age of air from the Northern Hemisphere midlatitude surface, J. Geophys. Res., 118, 11429-11441, doi:10.1002/jgrd.50848.
- Wofsy, S. C., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
- Tilmes, S., et al. (2010), An aircraft-based upper troposphere lower stratosphere O3, CO and H2O climatology for the Northern Hemisphere, J. Geophys. Res. (submitted).
- Weinstock, E., et al. (2009), Validation of the Harvard Lyman-a in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor, J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.
- Thompson, A. M., et al. (2007), Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 2. Tropospheric ozone budgets and variability over northeastern North America, J. Geophys. Res., 112, D12S13, doi:10.1029/2006JD007670.
- Perkins, K. K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
- Pfister, L., et al. (2001), Aircraft observations of thin cirrus clouds near the Tropical Tropopause, J. Geophys. Res., 106, 9765-9786.
- Weinstock, E., et al. (2001), Constraints on the seasonal cycle of stratospheric water vapor using in situ measurements from the ER-2 and a CO photochemical clock, J. Geophys. Res., 106, 22707-22734, doi:2000JD000047.
- Keim, E. R., et al. (1999), NOy partitioning from measurements of nitrogenand hydrogen radicals in the upper troposphere, Geophys. Res. Lett., 26, 51-54.
- Keim, E. R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
- Fahey, D., et al. (1995), In situ observations of aircraft exhaust in the lower stratosphere at midlatitudes, J. Geophys. Res., 3065-3074 (manuscript in preparation).
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.