A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.
Scattering of Gaussian beams by disordered particulate media
Mishchenko, M.I., and J.M. Dlugach (2016), Scattering of Gaussian beams by disordered particulate media, J. Quant. Spectrosc. Radiat. Transfer, 183, 85-89, doi:10.1016/j.jqsrt.2016.04.016.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Radiation Science Program (RSP)