Interdecadal variability in pan-Pacific and global SST, revisited

Tung, K., X. Chen, J. Zhou, and K. Li (2019), Interdecadal variability in pan-Pacific and global SST, revisited, Clim. Dyn., 52, 2145-2157.
Abstract

Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.

Research Program
Climate Variability and Change Program