The southeast Atlantic (SEA) region is host to a climatologically significant biomass burning aerosol layer overlying marine stratocumulus. We present the first results of the directly measured above-cloud aerosol optical depth (ACAOD) from the recent ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) airborne field campaign during August and September 2016. In our analysis, we use data from the Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) instrument and found an average ACAOD of 0.32 at 501 nm (range of 0.02 to 1.04), with an average Ångström exponent (AE) above clouds of 1.71. The AE is much lower at 1.25 for the full column (including below-cloud-level aerosol, with an average of 0.36 at 501 nm and a range of 0.02 to 0.74), indicating the presence of large aerosol particles, likely marine aerosol, in the lower atmospheric column. The ACAOD is observed from 4STAR to be highest near the coast at about 12◦ S, whereas its variability is largest at the southern edge of the average aerosol plume, as indicated by 12 years of MODIS observations. In comparison to MODISderived ACAOD and long-term fine-mode plume-average AOD along a diagonal routine track extending out from the coast of Namibia, the directly measured ACAOD from 4STAR is slightly lower than the ACAOD product from MODIS. The peak ACAOD expected from MODIS AOD retrievals averaged over a long term along the routine diagonal flight track (peak of 0.5) was measured to be closer to coast in 2016 at about 1.5–4◦ E, with 4STAR ACAOD av-
Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic
LeBlanc, S., J. Redemann, . Flynn, K. Pistone, M.S. Kacenelenbogen, M. Segal-Rozenhaimer, Y. Shinozuka, S. Dunagan, R.P. Dahlgren, K.G. Meyer, J.R. Podolske, S.G. Howell, S. Freitag, J.D.S. Griswold, B.N. Holben, M.S. Diamond, R. Wood, P. Formenti, S.J. Piketh, G.L. Maggs-Kolling, M. Gerber, and A. Namwoonde (2020), Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic, Atmos. Chem. Phys., 20, 1565-1590, doi:10.5194/acp-20-1565-2020.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Radiation Science Program (RSP)
Mission
ORACLES