Synonyms: 
SEACARS
SEA4CRS
SEACR4S
SEAC<sup>4</sup>RS
Associated content: 

Research Scanning Polarimeter

The NASA GISS Research Scanning Polarimeter (RSP) is a passive, downward-facing polarimeter that makes total radiance and linear polarization measurements in nine spectral bands ranging from the visible/near-infrared (VNIR) to the shortwave infrared (SWIR). The band centers are: 410 (30), 470 (20), 550 (20), 670 (20), 865 (20), 960 (20), 1590 (60), 1880 (90) and 2250 (130) nm where the full width at half maximum (FWHM) bandwidths of each channel is shown in parenthesis. Noise is minimized in the SWIR channels by cooling the detectors to less than 165K using a dewar of liquid nitrogen. The RSP measures the degree of linear polarization (DoLP) with an uncertainty of <0.2%. The polarimetric and radiometric intensity measurement uncertainties are each <3%. A full set of RSP’s design parameters are shown in Table 1 and more details on design and calibration can be found in Cairns et al. (1999) and Cairns et al. (2003).
 
The RSP is an along track scanning instrument that can make up to 152 measurements sweeping ± 60° from nadir along the aircraft's track every 0.8 seconds with each measurement having a 14 mrad (~0.8°) field-of-view. Each scan includes stability, dark reference and calibration checks. As the RSP travels aboard an aircraft, the same nadir footprint is viewed from multiple angles. Consecutive scans are aggregated into virtual scans that are reflectances of a single nadir footprint from multiple viewing angles. This format comprises the RSP’s Level 1C data.
 
RSP’s high-angular resolution and polarimetric accuracy enables numerous aerosol, cloud and ocean properties to be retrieved. These are Level 2 data products. A summary of the primary L2 aerosol, cloud and ocean data products retrieved by the RSP are shown in Table 3.
 
The RSP’s data archive is publicly available and organized by air campaign, each of which contain ReadMe files provided by the RSP team for their Level 1C and Level 2 data products, including important details about biases and uncertainties that data users should consult.

The RSP data archive is available at: https://data.giss.nasa.gov/pub/rsp/
 
A visualizer showing the times and locations of NASA Airborne Campaigns the RSP has taken part in is available at: http://rsp.apam.columbia.edu:3000
 

Table 1: RSP Design Parameters
Parameter Performance
Degree of Linear Polarization Uncertainty (%) <0.2
Polarization Uncertainty (%) <3.0
Radiometric Uncertainty (%) <3.0
Dynamic Range >104
Signal-to-Noise Ratio >2000 (with R=0.3)
Spectral Characteristics See table
Field of View >90o
Instantaneous FOV 14 mrad
Photodiode Detector Type:
·       Visible/NIR
·       Shortwave IR (temperature)
 
Silicon
HgCdTe (165K)
SWIR Detector Cooling LN2 dewar
Data Rate <20 kbytes/sec
Size, W x L x H (cm) 40 x 64 x 34
Mass (kg) <20
Power (watts) <20 w/o heaters

 

Table 2: RSP Spectral Channels
Band ID λc (nm) Δλ (nm) Wavelength Type
V1 410 27 Visible
V2 470 20 Visible
V3 555 20 Visible
V4 670 20 Visible
V5 865 20 Near-IR
V6 960 20 Near-IR
S1 1590 60 Shortwave-IR
S2 1880 90 Shortwave-IR
S3 2250 130 Shortwave-IR

 

Table 3: Summary of L2 Data Products
Property Type Property Uncertainty Reference
Aerosol Aerosol Optical Depth for fine & coarse modes (column) 0.02/7% Stamnes et al., 2018
Aerosol Aerosol Size: effective radius for fine and coarse modes (column) 0.05 µm/10% Stamnes et al., 2018
Aerosol Aerosol Size: effective variance for fine and coarse modes (column) 0.3/50% Stamnes et al., 2018
Aerosol Aerosol Single Scatter Albedo (column) 0.03 Stamnes et al., 2018
Aerosol Aerosol Refractive Index (column) 0.02 Stamnes et al., 2018
Aerosol Aerosol Number Concentration 50% Schlosser et al., 2022
Aerosol Aerosol Top Height < 1 km Wu et al., 2016
Aerosol Surface Wind Speed 0.5 m s-1 Stamnes et al., 2018
Ocean Chlorophyll-A Concentration 0.7 mg m-3 Stamnes et al., 2018
Ocean Ocean diffuse attenuation coefficient 40% Stamnes et al., 2018
Ocean Ocean hemispherical backscatter coefficient 10% Stamnes et al., 2018
Cloud Cloud Flag 10%  
Cloud Cloud Albedo 10%  
Cloud Cloud Top Phase Index 10% van Diedenhoven et al., 2012
Cloud Cloud Top Effective Radius 1 um/10% Alexandrov et al., 2012a/b
Cloud Cloud Top Effective Variance 0.05/50% Alexandrov et al., 2012a/b
Cloud Cloud Mean Effective Radius 20% Alexandrov et al., 2012a/b
Cloud Cloud Optical Depth 10% Nakajima & King, 1990
Cloud Liquid Water Path 25% Sinclair et al., 2021
Cloud Columnar Water Vapor (Above Surface or Cloud) 10% Nielsen et al., 2023 (to be submitted)
Cloud Cloud Top Height 15% Sinclair et al., 2017
Cloud Cloud Droplet Number Concentration 25% Sinclair et al., 2021; Sinclair et al., 2019

 

Table 4: References
Alexandrov, M. D., Cairns, B., & Mishchenko, M. I. (2012). Rainbow fourier transform. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(18), 2521-2535.
Alexandrov, M. D., Cairns, B., Emde, C., Ackerman, A. S., & van Diedenhoven, B. (2012). Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter. Remote Sensing of Environment, 125, 92-111.
Cairns, B., E.E. Russell, and L.D. Travis, 1999: The Research Scanning Polarimeter: Calibration and ground-based measurements. In Polarization: Measurement, Analysis, and Remote Sensing II, 18 Jul. 1999, Denver, Col., Proc. SPIE, vol. 3754, pp. 186, doi:10.1117/12.366329.
Cairns, B., E.E. Russell, J.D. LaVeigne, and P.M.W. Tennant, 2003: Research scanning polarimeter and airborne usage for remote sensing of aerosols. In Polarization Science and Remote Sensing, 3 Aug. 2003, San Diego, Cal., Proc. SPIE, vol. 5158, pp. 33, doi:10.1117/12.518320.
Nakajima, T., & King, M. D. (1990). Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. Journal of Atmospheric Sciences, 47(15), 1878-1893.
Schlosser, J. S., Stamnes, S., Burton, S. P., Cairns, B., Crosbie, E., Van Diedenhoven, B., ... & Sorooshian, A. (2022). Polarimeter+ lidar derived aerosol particle number concentration. CHARACTERIZATION OF REMOTELY SENSED, MODELED, AND IN-SITU DERIVED AMBIENT AEROSOL PROPERTIES.
Sinclair, K., Van Diedenhoven, B., Cairns, B., Yorks, J., Wasilewski, A., & McGill, M. (2017). Remote sensing of multiple cloud layer heights using multi-angular measurements. Atmospheric Measurement Techniques, 10(6), 2361-2375.
Sinclair, K., Van Diedenhoven, B., Cairns, B., Alexandrov, M., Moore, R., Crosbie, E., & Ziemba, L. (2019). Polarimetric retrievals of cloud droplet number concentrations. Remote Sensing of Environment, 228, 227-240.
Sinclair, K., van Diedenhoven, B., Cairns, B., Alexandrov, M., Dzambo, A. M., & L'Ecuyer, T. (2021). Inference of precipitation in warm stratiform clouds using remotely sensed observations of the cloud top droplet size distribution. Geophysical Research Letters, 48(10), e2021GL092547.
Stamnes, S., et al. "Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products." Applied optics 57.10 (2018): 2394-2413.
van Diedenhoven, B., Fridlind, A. M., Ackerman, A. S., & Cairns, B. (2012). Evaluation of hydrometeor phase and ice properties in cloud-resolving model simulations of tropical deep convection using radiance and polarization measurements. Journal of the Atmospheric Sciences, 69(11), 3290-3314.
Wu, L., Hasekamp, O., van Diedenhoven, B., Cairns, B., Yorks, J. E., & Chowdhary, J. (2016). Passive remote sensing of aerosol layer height using near‐UV multiangle polarization measurements. Geophysical research letters, 43(16), 8783-8790.
Instrument Type: 
Measurements: 
Aircraft: 
ER-2 - AFRC, P-3 Orion - WFF, C-130- WFF, King Air B-200 - LaRC, J-31
Point(s) of Contact: 

Enhanced MODIS Airborne Simulator

The Enhanced MODIS Airborne Simulator (EMAS) is a multispectral scanner configured to approximate the Moderate-Resolution Imaging Spectrometer (MODIS), an instrument orbiting on the NASA Terra and Aqua satellites. MODIS is designed to measure terrestrial and atmospheric processes. The EMAS was a joint development project of Daedalus Enterprises, Berkeley Camera Engineering, the USU Space Dynamics Laboratory, and Ames Research Center. The EMAS system acquires 50-meter spatial resolution imagery, in 38 spectral bands, of cloud and surface features from the vantage point of the NASA ER-2 high-altitude research aircraft.

Instrument Type: Multispectral Imager
Measurements: VNIR/SWIR/LWIR Imagery
 

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

In Situ Airborne Formaldehyde

The NASA GSFC In Situ Airborne Formaldehyde (ISAF) instrument measures formaldehyde (CH2O) on both pressurized and unpressurized (high-altitude) aircraft. Using laser induced fluorescence (LIF), ISAF possesses the high sensitivity, fast time response, and dynamic range needed to observe CH2O throughout the troposphere and lower stratosphere, where concentrations can range from 10 pptv to hundreds of ppbv.

Formaldehyde is produced via the oxidation of hydrocarbons, notably methane (a ubiquitous greenhouse gas) and isoprene (the primary hydrocarbon emitted by vegetation). Observations of CH2O can thus provide information on many atmospheric processes, including:
 - Convective transport of air from the surface to the upper troposphere
 - Emissions of reactive hydrocarbons from cities, forests, and fires
 - Atmospheric oxidizing capacity, which relates to formation of ozone and destruction of methane
In situ observations of CH2O are also crucial for validating retrievals from satellite instruments, such as OMI, TROPOMI, and TEMPO.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

In-Situ Measurements of Aerosol Optical Properties

Three instruments, a cavity ringdown (CRD) aerosol extinction spectrometer, a photoacoustic absorption spectrometer (PAS), and an ultra-high sensitivity aerosol size spectrometer (UHSAS) comprise the AOP package. The AOP package provides multi‐wavelength, multi-RH aerosol extinction and absorption measurements with fast response and excellent accuracy and stability on aircraft platforms. The instruments will also characterize the optics of black carbon (BC) mixing state, brown carbon, and water uptake of aerosol. Aerosol asymmetry parameter, needed for radiative transfer modeling, will be calculated from dry and humidified particle size distributions.

Instrument Type: 
Point(s) of Contact: 

NOAA Nitrogen Oxides and Ozone

The NOAA NOyO3 4-channel chemiluminescence (CL) instrument will provide in-situ measurements of nitric oxide (NO), nitrogen dioxide (NO2), total reactive nitrogen oxides (NOy), and ozone (O3) on the NASA DC-8 during the FIREX-AQ project. Different versions of this instrument have flown on the NASA DC-8 and NOAA WP-3D research aircraft on field projects since 1995. It provides fast-response, specific, high precision, and calibrated measurements of nitrogen oxides and ozone at a spatial resolution of better than 100m at typical DC-8 research flight speeds. Detection is based on the gas-phase CL reaction of NO with O3 at low pressure, resulting in photoemission from electronically excited NO2. Photons are detected and quantified using pulse counting techniques, providing ~5 to 10 part-per-trillion by volume (pptv) precision at 1 Hz data rates. One detector of the integrated 4-channel instrument is used to measure ambient NO directly, a second detector is equipped with a UV-LED converter to photodissociate ambient NO2 to NO, and a third detector is equipped with a heated gold catalyst to reduce ambient NOy species to NO. Reagent ozone is added to these sample streams to drive the CL reactions with NO. Ambient O3 is detected in the fourth channel by adding reagent NO.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe

The DASH-SP providse rapid measurements of size-resolved aerosol sub-saturated hygroscopic growth factors and the real part of aerosol refractive index. It has been deployed aboard the NASA DC-8 during the DC3 and SEAC4RS field campaign and also on the P3 during ARCSIX (May-Aug 2024).

Measurements: 
Point(s) of Contact: 

Thermal-Dissociation Laser Induced Fluorescence

The UC Berkeley thermal-dissociation laser-induced fluorescence (TD- LIF) instrument detects NO2 directly and detects total peroxynitrates (ΣPNs ≡ PAN + PPN +N2O5 + HNO4. . .), total alkyl- and other thermally stable organic nitrates (ΣANs), and HNO3 following thermal dissociation of these NOy species to NO2. The sensitivity for NO2 at 1 Hz is 30 pptv (S/N=2) with a slope uncertainty of 5%. The uncertainties for the dissociated species are 10% for ΣPNs and 15% for ΣANs and HNO3.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Differential Absorption Lidar

The NASA Langley Airborne Differential Absorption Lidar (DIAL) system uses four lasers to make DIAL O3 profile measurements in the ultraviolet (UV) simultaneously with aerosol profile measurements in the visible and IR. Recent changes incorporate an additional laser and modifications to the receiver system that will provide aerosol backscatter, extinction, and depolarization profile measurements at three wavelengths (UV, visible, and NIR). For SEAC4RS, the DIAL instrument will include for the first time aerosol and cloud measurements implementing the High Spectral Resolution Lidar (HSRL) technique [Hair, 2008]. The modifications include integrating an additional 3-wavelength (355 nm, 532 nm, 1064 nm) narrowband laser and the receiver to make the following measurements; depolarization at all three wavelengths, aerosol/cloud backscatter and extinction at 532 nm via the HSRL technique, and aerosol/cloud backscatter at the 355 and 1064 nm via the standard backscatter lidar technique. Integration of the aerosol extinction profile at 532nm above and below the aircraft also provides aerosol optical depth (AOD) along the aircraft flight track.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Difference Frequency Generation Absorption Spectrometer

The DFGAS instrument utilizes a room temperature infrared (IR) laser source based upon non-linear difference frequency generation (DFG) in the measurement of CH2O.

Mid-IR laser light is generated in the DFG system by mixing the output of two near-IR room temperature laser sources (one at 1562-nm and the other at 1083-nm) in a periodically poled lithium niobate (PPLN) non-linear wavelength conversion crystal. The mid-IR difference frequency at 2831.6 cm-1 (3.53-μm) is generated at the PPLN output and directed through a multipass astigmatic Herriott cell (100-m pathlength using ~ 4-liter sampling volume) and ultimately onto IR detectors employing a number of optical elements. A portion of the IR beam is split off by a special beam splitter (BS) before the multipass cell and focused onto an Amplitude Modulation Detector (AMD) to capture and remove optical noise from various components in the difference frequency generation process. A third detection channel from light emanating out the back of the beam splitter is directed through a low pressure CH2O reference cell and onto a reference detector (RD) for locking the center of the wavelength scan to the absorption line center. The mid-IR DFG output is simultaneously scanned and modulated over the CH2O absorption feature, and the second harmonic signals at twice the modulation frequency from the 3 detectors are processed using a computer lock-in amplifier [Weibring et al. [2006].

Ambient air is continuously drawn through a heated rear-facing inlet at flow rates around 9 standard liters per minute (slm), through a pressure controller, and through the multipass Herriott cell maintained at a constant pressure around 50-Torr. Ambient measurements are acquired in 1-second increments for time periods as long as 60 to 120-seconds (to be determined during the campaign), and this will be followed by 15-seconds of background zero air acquisition, using an onboard CH2O scrubbing unit. The zero air is added back to the inlet a few centimeters from the tip at flow rates ~ 2 to 3 slm higher than the cell flow. This frequent zeroing procedure very effectively captures and removes optical noise as well as residual outgassing from inlet line and cell contaminants. Retrieved CH2O mixing ratios are determined for each 1-second ambient spectrum by fitting to a reference spectrum, obtained by introducing high concentration calibration standards (~ 3 to 7-ppbv) from an onboard permeation calibration system into the inlet approximately every hour. The calibration outputs for the two permeation tubes employed are determined before and after the field campaign using multiple means, including direct absorption employing the Beer-Lambert Law relationship. The 1-second ambient CH2O results can be further averaged into longer time intervals for improved precision. However, in all cases the 1-second results are retained. This flexibility allows one to further study pollution plumes with high temporal resolution, and at the same time study more temporally constant background CH2O levels in the upper troposphere using longer integration times.

Instrument Type: 
Measurements: 
Point(s) of Contact: 
Alan Fried (Co-I)

Pages

Subscribe to RSS - SEAC4RS