The ESPO website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Ronald C. Cohen
Organization:
University of California, Berkeley
Business Address:
Hildebrand Hall
UC Berkeley
Berkeley, CA 94720-1460
United StatesFirst Author Publications:
Co-Authored Publications:
- Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
- Day, D. A., et al. (2022), A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry, Atmos. Meas. Tech., 15, 459-483, doi:10.5194/amt-15-459-2022.
- Li, C., et al. (2022), Direct retrieval of NO2 vertical columns from UV-Vis (390-495 nm) spectral radiance using a neural network, Journal of Remote Sensing, ID, article, doi:10.34133/2022/9817134.
- Li, C., et al. (2022), AAAS Journal of Remote Sensing Volume 2022, Article ID 9817134, 17 pages, Journal of Remote Sensing, 9817134, doi:10.34133/2022/9817134.
- Li, C., et al. (2022), Accelerated reduction of air pollutants in China, 2017-2020, Science of the Total Environment, 803, 150011, doi:10.1016/j.scitotenv.2021.150011.
- Wolfe, G. M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
- Zhu, Q., J. Laughner, and R. C. Cohen (2022), Combining machine learning and satellite observations to predict spatial and temporal variation of surface OH in cities, Env. Sci and Tech., 56, 7362-7371, doi:10.1021/acs.est.1c05636.
- Zhu, Q., J. Laughner, and R. C. Cohen (2022), RESEARCH ARTICLE EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Estimate of OH trends over one decade in North American cities, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2117399119.
- Jin, X., Q. Zhu, and R. C. Cohen (2021), Direct estimates of biomass burning NOx emissions and lifetime using daily observations from TROPOMI, Atmos. Chem. Phys., doi:10.5194/acp-2021-381.
- Jin, X., Q. Zhu, and R. C. Cohen (2021), Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI, Atmos. Chem. Phys., 21, 15569-15587, doi:10.5194/acp-21-15569-2021.
- Kenagy, H., et al. (2021), Evidence of Nighttime Production of Organic Nitrates During SEAC4 RS, FRAPPÉ, and KORUS-AQ, Geophys. Res. Lett..
- Kenagy, H., et al. (2021), Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ, Environ. Sci. Technol., 55, 16326-16338, doi:10.1021/acs.est.1c05521.
- Li, C., and R. C. Cohen (2021), Space-Borne Estimation of Volcanic Sulfate Aerosol Lifetime, J. Geophys. Res..
- Li, C., and R. C. Cohen (2021), Space-borne estimation of volcanic sulfate aerosol lifetime, J. Geophys. Res., 126, org/10.1029/2020JD033883.
- Liu, X., et al. (2021), The potential for geostationary remote sensing of NO2 to improve weather prediction, Atmos. Chem. Phys., 21, 9573-9583, doi:10.5194/acp-21-9573-2021.
- Turner, A. J., et al. (2021), Observed Impacts of COVID-19 on Urban CO2 Emissions, Geophys. Res. Lett..
- Choi, S., et al. (2020), Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546, doi:10.5194/amt-13-2523-2020.
- Delaria, E., and R. C. Cohen (2020), A model-based analysis of foliar NOx deposition, Atmos. Chem. Phys., 20, 2123-2141, doi:10.5194/acp-20-2123-2020.
- Turner, A. J., et al. (2020), A double peak in the seasonality of California’s photosynthesis as observed from space, Biogeosciences, 17, 405-422, doi:10.5194/bg-17-405-2020.
- Turner, A. J., et al. (2020), manuscript submitted to Geophysical Research Letters Extreme events driving year-to-year differences in gross primary productivity across the US, CC_BY_NC_ND_4.0 , First posted online: Tue, 36, doi:10.1002/essoar.10504378.1.
- Haskins, J. D., et al. (2019), Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants, Geophys. Res. Lett., 46, 14,826-14,835, doi:10.1029/2019GL085498.
- Laughner, J., and R. C. Cohen (2019), Direct observation of changing NOx lifetime in North American cities, Science, 366, 723-727, doi:10.1126/science.aax6832.
- Sparks, T., et al. (2019), Comparison of Airborne Reactive Nitrogen Measurements During WINTER, J. Geophys. Res., 124, 10,483-10,502, doi:10.1029/2019JD030700.
- Zhu, Q., J. Laughner, and R. C. Cohen (2019), Lightning NO2 simulation over the contiguous US and its effects on satellite NO2 retrievals, Atmos. Chem. Phys., 19, 13067-13078, doi:10.5194/acp-19-13067-2019.
- Mao, J., et al. (2018), Southeast Atmosphere Studies: learning from model-observation syntheses, Atmos. Chem. Phys., 18, 2615-2651, doi:10.5194/acp-18-2615-2018.
- McDuffie, E., et al. (2018), ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res., 123, 12,994-13,015, doi:10.1029/2018JD029358.
- Romer, P., et al. (2018), Cite This: Environ. Sci. Technol. 2018, 52, 13738−13746 pubs.acs.org/est Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environ. Sci. Technol., doi:10.1021/acs.est.8b03861.
- Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
- Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
- Pusede, S. E., et al. (2016), On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol, Atmos. Chem. Phys., 16, 2575-2596, doi:10.5194/acp-16-2575-2016.
- Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
- Emmons, L., et al. (2015), The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations, Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
- Nault, B., et al. (2015), Measurements of CH3O2NO2 in the upper troposphere, Atmos. Meas. Tech., 8, 987-997, doi:10.5194/amt-8-987-2015.
- Pusede, S. E., A. L. Steiner, and R. C. Cohen (2015), Temperature and Recent Trends in the Chemistry of Continental Surface Ozone, Chem. Rev., 115, 3898-3918, doi:10.1021/cr5006815.
- Teng, A., et al. (2015), Hydroxy nitrate production in the OH-initiated oxidation of alkenes, Atmos. Chem. Phys., 15, 4297-4316, doi:10.5194/acp-15-4297-2015.
- Barth, M., et al. (2014), The Deep Convective Clouds and Chemistry (DC3) Field Campaign,, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-13-00290.1.
- Browne, E. C., et al. (2014), On the role of monoterpene chemistry in the remote continental boundary layer, Atmos. Chem. Phys., 14, 1225-1238, doi:10.5194/acp-14-1225-2014.
- Mebust, A. K., and R. C. Cohen (2014), Space-based observations of fire NOx emission coefficients: a global biome-scale comparison, Atmos. Chem. Phys., 14, 2509-2524, doi:10.5194/acp-14-2509-2014.
- Valin, L. C., A. R. Russell, and R. C. Cohen (2014), Chemical feedback effects on the spatial patterns of the NOx weekend effect: a sensitivity analysis, Atmos. Chem. Phys., 14, 1-9, doi:10.5194/acp-14-1-2014.
- Bertram, T. H., et al. (2013), On the export of reactive nitrogen from Asia: NOx partitioning and effects on ozone, Atmos. Chem. Phys., 13, 4617-4630, doi:10.5194/acp-13-4617-2013.
- Brent, L. C., et al. (2013), Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ, J. Atmos. Chem., doi:10.1007/s10874-013-9265-6.
- Browne, E. C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543-4562, doi:10.5194/acp-13-4543-2013.
- Mao, J., et al. (2013), Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, J. Geophys. Res., 118, 11256-11268, doi:10.1002/jgrd.50817.
- Mebust, A. K., and R. C. Cohen (2013), Observations of a seasonal cycle in NOx emissions from fires in African woody savannas, Geophys. Res. Lett., 40, 1451-1455, doi:10.1002/grl.50343.
- Perring, A., S. E. Pusede, and R. C. Cohen (2013), An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol, Chemical Reviews, 113, 5848-5870, doi:10.1021/cr300520x.
- Rollins, A. W., et al. (2013), Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield, J. Geophys. Res., 118, 6651-6662, doi:10.1002/jgrd.50522.
- Ryerson, T. B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
- Valin, L. C., A. R. Russell, and R. C. Cohen (2013), Variations of OH radical in an urban plume inferred from NO2 column measurements, Geophys. Res. Lett., 40, 1856-1860, doi:10.1002/grl.50267.
- Xie, Y., et al. (2013), Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality, Atmos. Chem. Phys., 13, 8439-8455, doi:10.5194/acp-13-8439-2013.
- Henderson, B. H., et al. (2012), Combining Bayesian methods and aircraft observations to constrain the HO q + NO2 reaction rate, Atmos. Chem. Phys., 12, 653-667, doi:10.5194/acp-12-653-2012.
- Hudman, R. C., et al. (2012), Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779-7795, doi:10.5194/acp-12-7779-2012.
- Pusede, S. E., and R. C. Cohen (2012), On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995–present, Atmos. Chem. Phys., 12, 8323-8339, doi:10.5194/acp-12-8323-2012.
- Russell, A. R., L. C. Valin, and R. C. Cohen (2012), Trends in OMI NO2 observations over the United States: effects of emission control technology and the economic recession, Atmos. Chem. Phys., 12, 12197-12209, doi:10.5194/acp-12-12197-2012.
- Browne, E. C., et al. (2011), Global and regional effects of the photochemistry of CH3O2NO2: evidence from ARCTAS, Atmos. Chem. Phys., 11, 4209-4219, doi:10.5194/acp-11-4209-2011.
- Fried, A., et al. (2011), Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds, Atmos. Chem. Phys., 11, 11867-11894, doi:10.5194/acp-11-11867-2011.
- Henderson, B. H., et al. (2011), Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere, Atmos. Chem. Phys., 11, 275-291, doi:10.5194/acp-11-275-2011.
- Mebust, A. K., et al. (2011), Characterization of wildfire NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns, Atmos. Chem. Phys., 11, 5839-5851, doi:10.5194/acp-11-5839-2011.
- Russell, A. R., et al. (2011), A high spatial resolution retrieval of NO2 column densities from OMI: method and evaluation, Atmos. Chem. Phys., 11, 8543-8554, doi:10.5194/acp-11-8543-2011.
- Valin, L. C., et al. (2011), Effects of model resolution on the interpretation of satellite NO2 observations, Atmos. Chem. Phys., 11, 11647-11655, doi:10.5194/acp-11-11647-2011.
- Valin, L. C., et al. (2011), Observation of slant column NO2 using the super-zoom mode of AURA-OMI, Atmos. Meas. Tech., 4, 1929-1935, doi:10.5194/amt-4-1929-2011.
- Adhikary, B., et al. (2010), A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091-2115, doi:10.5194/acp-10-2091-2010.
- Adhikary, B., et al. (2010), Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign, Atmos. Chem. Phys. Discuss., 10, 2091-2115.
- Alvarado, M. J., et al. (2010), Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, doi:10.5194/acp-10-9739-2010.
- Bucsela, E. J., et al. (2010), Lightning‐generated NOx seen by the Ozone Monitoring Instrument during NASA’s Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J10, doi:10.1029/2009JD013118.
- Choi, W., et al. (2010), Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons, Atmos. Chem. Phys., 10, 8761-8781, doi:10.5194/acp-10-8761-2010.
- Hains, J. C., et al. (2010), Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX‐B validation campaigns, J. Geophys. Res., 115, D05301, doi:10.1029/2009JD012399.
- Hudman, R. C., et al. (2010), Interannual variability in soil nitric oxide emissions over the United States as viewed from space, Atmos. Chem. Phys., 10, 9943-9952, doi:10.5194/acp-10-9943-2010.
- Mao, J., et al. (2010), Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010.
- Perring, A., et al. (2010), Alkylnitrate production and persistence in Mexico City plumes, Atmos. Chem. Phys. Discuss., 9, 23755-23790.
- Perring, A., et al. (2010), The production and persistence of ΣRONO2 in the Mexico City plume, Atmos. Chem. Phys., 10, 7215-7229, doi:10.5194/acp-10-7215-2010.
- Russell, A. R., et al. (2010), Space-based Constraints on Spatial and Temporal Patterns of NOx Emissions in California, 2005-2008, Environ. Sci. Technol., 44, 3608-3615, doi:10.1021/es903451j.
- Singh, H., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
- Walker, T. W., et al. (2010), Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring, Atmos. Chem. Phys., 10, 8353-8372, doi:10.5194/acp-10-8353-2010.
- Wooldridge, P. J., et al. (2010), Total Peroxy Nitrates ( PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements, Atmos. Meas. Tech., 3, 593-607, doi:10.5194/amt-3-593-2010.
- Cooper, O. R., et al. (2009), Summertime buildup and decay of lightning NOx and aged thunderstorm outflow above North America, J. Geophys. Res., 114, D01101, doi:10.1029/2008JD010293.
- Mao, J., et al. (2009), Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163-173, doi:10.5194/acp-9-163-2009.
- McNaughton, C. S., et al. (2009), Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 8283-8308, doi:10.5194/acp-9-8283-2009.
- Perring, A., et al. (2009), Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates, Atmos. Chem. Phys., 9, 1451-1463, doi:10.5194/acp-9-1451-2009.
- Perring, A., et al. (2009), A product study of the isoprene+NO3 reaction, Atmos. Chem. Phys., 9, 4945-4956, doi:10.5194/acp-9-4945-2009.
- Boersma, K. F., et al. (2008), Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480-4497, doi:10.1016/j.atmosenv.2008.02.004.
- Bucsela, E. J., et al. (2008), Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI, J. Geophys. Res., 113, D16S31, doi:10.1029/2007JD008838.
- Day, D. A., P. J. Wooldridge, and R. C. Cohen (2008), Observations of the effects of temperature on atmospheric HNO3, ANs, PNs, and NOx: evidence for a temperature-dependent HOx source, Atmos. Chem. Phys., 8, 1867-1879, doi:10.5194/acp-8-1867-2008.
- Fried, A., et al. (2008), Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign, J. Geophys. Res., 113, D17306, doi:10.1029/2007JD009760.
- Ren, X., et al. (2008), HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies, J. Geophys. Res., 113, D05310, doi:10.1029/2007JD009166.
- Zhang, L., et al. (2008), Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117-6136, doi:10.5194/acp-8-6117-2008.
- Bertram, T. H., et al. (2007), Direct Measurements of the Convective Recycling of the Upper Troposphere, Science, 315, 816-820, doi:10.1126/science.1134548.
- Horowitz, L. W., et al. (2007), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res., 112, D12S08, doi:10.1029/2006JD007747.
- Hudman, R. C., et al. (2007), Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912.
- Kim, S., et al. (2007), Measurement of HO2NO2 in the free troposphere during the Intercontinental Chemical Transport Experiment–North America 2004, J. Geophys. Res., 112, D12S01, doi:10.1029/2006JD007676.
- Liang, Q., et al. (2007), Summertime influence of Asian pollution in the free troposphere over North America, J. Geophys. Res., 112, D12S11, doi:10.1029/2006JD007919.
- Loughner, C. P., et al. (2007), A Method to Determine the Spatial Resolution Required to Observe Air Quality From Space, IEEE Trans. Geosci. Remote Sens., 45, 1308-1314, doi:10.1109/TGRS.2007.893732.
- Pérez, I. M., P. J. Wooldridge, and R. C. Cohen (2007), Laboratory evaluation of a novel thermal dissociation chemiluminescence method for in situ detection of nitrous acid, Atmos. Environ., 41, 3993-4001, doi:10.1016/j.atmosenv.2007.01.060.
- Pierce, B., et al. (2007), Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America, J. Geophys. Res., 112, D12S21, doi:10.1029/2006JD007722.
- Singh, H., et al. (2007), Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere, J. Geophys. Res., 112, D12S04, doi:10.1029/2006JD007664.
- Cooper, O. R., et al. (2006), Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network, J. Geophys. Res., 111, D24S05, doi:10.1029/2006JD007306.
- Martin, R., et al. (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, J. Geophys. Res., 111, D15308, doi:10.1029/2005JD006680.
- Bertram, T. H., et al. (2005), Satellite measurements of daily variations in soil NOx emissions, Geophys. Res. Lett., 32, L24812, doi:10.1029/2005GL024640.
- Murphy, D., et al. (2004), Measurements of the sum of HO2NO2 and CH3O2NO2 in the remote troposphere, Atmos. Chem. Phys., 4, 377-384, doi:10.5194/acp-4-377-2004.
- Day, D. A., et al. (2003), On alkyl nitrates, O3, and the ‘‘missing NOy’’, J. Geophys. Res., 108, 4501, doi:10.1029/2003JD003685.
- Thornton, J. A., et al. (2003), Comparisons of in situ and long path measurements of NO2 in urban plumes, J. Geophys. Res., 108, 4496, doi:10.1029/2003JD003559.
- Wood, E. C., et al. (2003), Prototype for In Situ Detection of Atmospheric NO3 and N2O5 via Laser-Induced Fluorescence, Environ. Sci. Technol., 37, 5732-5738, doi:10.1021/es034507w.
- Cleary, P. A., P. J. Wooldridge, and R. C. Cohen (2002), Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion, Appl. Opt., 41, 6950-6956.
- Day, D. A., et al. (2002), A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J. Geophys. Res., 107, doi:10.1029/2001JD000779.
- Thornton, J. A., et al. (2002), Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume, J. Geophys. Res., 107, NO. D12, doi:10.1029/2001JD000932.
- Lanzendorf, E. J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
- Perkins, K. K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
- Voss, P. B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
- Fahey, D., et al. (2000), Ozone destruction and production rates between spring and autumn in the Arctic stratosphere, Geophys. Res. Lett., 27:, 2605-2608.
- Thornton, J. A., et al. (2000), Atmospheric NO2: In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios, Anal. Chem., 72, 528-539, doi:10.1021/ac9908905.
- Drdla, K., et al. (1999), Microphysics and chemistry of sulfate aerosols at warm stratospheric temperatures, J. Geophys. Res., 104, 26737-26751.
- Gao, R., et al. (1999), A comparison of observations and model simulations of NOx/NOy in the lower stratosphere, Geophys. Res. Lett., 26, 1153-1156.
- Jaeglé, L., et al. (1997), Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere, J. Geophys. Res., 102.D11, 13235-13253.
- Keim, E. R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Stimpfle, R., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.
- Wennberg, P. O., et al. (1994), Aircraft-borne, Laser-Induced Fluorescence Instrument for the in situ detection of hydroxyl and hydroperoxyl radicals, Review of Scientific Instruments, 65, 1858-1876.
- Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.