Organization
NASA Goddard Space Flight Center
Email
Business Phone
Work
(301) 614-5987
Mobile
(443) 722-6346
Business Address
NASA/GSFC
8800 Greenbelt Rd
code 614 bldg 33 rm E310
Greenbelt, MD 20771
United States
Co-Authored Publications
-
Johnson, M., et al. (2023), Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign, Atmos. Meas. Tech., 16, 2431-2454, doi:10.5194/amt-16-2431-2023.
-
Allen, D.J., et al. (2021), Observations of Lightning NOx Production From GOES-R Post Launch Test Field Campaign Flights, J. Geophys. Res., 126, e2020JD033769, doi:10.1029/2020JD033769.
-
Chen, X., et al. (2021), First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: Algorithm development and application for surface particulate matter estimates, Remote Sensing of Environment, 265, 112674, doi:10.1016/j.rse.2021.112674.
-
Li, J., et al. (2021), Comprehensive evaluations of diurnal NO2 measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NOx emissions, Atmos. Chem. Phys., 21, 11133-11160, doi:10.5194/acp-21-11133-2021.
-
Tang, W., et al. (2021), Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements, Atmos. Meas. Tech., 14, 4639-4655, doi:10.5194/amt-14-4639-2021.
-
Chong, H., et al. (2020), High-resolution mapping of SO2 using airborne observations from the T GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals ⁎, Remote Sensing of Environment, 241, 111725, doi:10.1016/j.rse.2020.111725.
-
Hou, W., et al. (2020), An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign, J. Quant. Spectrosc. Radiat. Transfer, 253, 107161, doi:10.1016/j.jqsrt.2020.107161.
-
Judd, L.M., et al. (2020), Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound, Atmos. Meas. Tech., doi:10.5194/amt-2020-151.
-
Souri, A., et al. (2020), Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign, Atmos. Environ., 224, 117341, doi:10.1016/j.atmosenv.2020.117341.
-
Behrenfeld, M.J., et al. (2019), The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview, Front. Mar. Sci., 6, 122, doi:10.3389/fmars.2019.00122.
-
Judd, L.M., et al. (2019), Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech., doi:10.5194/amt-2019-161.
-
Sullivan, J.T., et al. (2019), Taehwa Research Forest: a receptor site for severe domestic pollution events in Korea during 2016, Atmos. Chem. Phys., 19, 5051-5067, doi:10.5194/acp-19-5051-2019.
-
Judd, L.M., et al. (2018), The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles, Front. Environ. Sci., 6, 85, doi:10.3389/fenvs.2018.00085.
-
Lennartson, E.M., et al. (2018), Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-Chem model, Atmos. Chem. Phys., 18, 15125-15144, doi:10.5194/acp-18-15125-2018.
-
Nowlan, C., et al. (2018), Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941-5964, doi:10.5194/amt-11-5941-2018.
-
Souri, A., et al. (2018), First top‐down estimates of anthropogenic NOx emissions using high‐resolution airborne remote sensing observations, J. Geophys. Res., 123, 3269-3284, doi:10.1002/2017JD028009.
-
Souri, A.H., et al. (2018), First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations, J. Geophys. Res., 123, 3269-3284.
-
Lamsal, L., et al. (2017), High-resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation, J. Geophys. Res., 122, 1953-1970, doi:10.1002/2016JD025483.
-
Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
-
Liu, C., et al. (2015), Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign, Atmos. Meas. Tech., 8, 751-759, doi:10.5194/amt-8-751-2015.
-
Kowalewski, M., and S. Janz (2009), Remote sensing capabilities of the Airborne Compact Atmospheric Mapper, 74520Q-74520Q-10.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.