Organization
NASA Langley Research Center
Co-Authored Publications
-
Hannun, R.A., et al. (2020), Spatial heterogeneity in CO2, CH4, and energy fluxes: insights from airborne eddy covariance measurements over the Mid-Atlantic region, Environmental Research Letters., 15, 035008, doi:10.1088/1748-9326/ab7391.
-
Wolfe, G.M., et al. (2018), The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology, Atmos. Meas. Tech., 11, 1757-1776, doi:10.5194/amt-11-1757-2018.
-
Smith, W.L., et al. (2017), Arctic Radiation-Icebridge Sea And Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition, Bull. Am. Meteorol. Soc., 1399-1426, doi:10.1175/BAMS-D-14-00277.1.
-
Ziemba, L.D., et al. (2013), Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity, Geophys. Res. Lett., 40, 417-422, doi:10.1029/2012GL054428.
-
Adhikary, B., et al. (2010), A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign, Atmos. Chem. Phys., 10, 2091-2115, doi:10.5194/acp-10-2091-2010.
-
Adhikary, B., et al. (2010), Trans-Pacific transport and evolution of aerosols and trace gases from Asia during the INTEX-B field campaign, Atmos. Chem. Phys. Discuss., 10, 2091-2115.
-
Ren, ., et al. (2008), HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies, J. Geophys. Res., 113, D05310, doi:10.1029/2007JD009166.
-
Cantrell, C., et al. (2003), Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign as measured aboard the NASA P-3B aircraft, J. Geophys. Res., 108, 8797, doi:10.1029/2003JD003674.
-
Carmichael, G.R., et al. (2003), Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment, J. Geophys. Res., 108, 8823, doi:10.1029/2002JD003117.
-
Crawford, J.H., et al. (2003), Clouds and trace gas distributions during TRACE-P, J. Geophys. Res., 108, 8818, doi:10.1029/2002JD003177.
-
Eisele, F., et al. (2003), Summary of measurement intercomparisons during TRACE-P, J. Geophys. Res., 108, 8791, doi:10.1029/2002JD003167.
-
Ferrare, R.A., et al. (2001), LASE measurements of water vapor, aerosols, and clouds during SOLVE, Trends Opt. Photonics, 52, 23-25.
-
Lefer, B.L., et al. (2001), Comparison of airborne NO2 photolysis frequency measurements during PEM-Tropics B, J. Geophys. Res., 106, 32645-32656.
-
Crawford, J.H., et al. (1999), Assessment of upper tropospheric HOx sources over the tropical Pacific based on NASA GTE/PEM data: Net effect on HOx and other photochemical parameters, J. Geophys. Res., 104, 16,255-16.
-
Crawford, J.H., et al. (1997), Implications of large scale shifts in tropospheric Nox lebels in the remote tropical Pacific, J. Geophys. Res., 102.D23, 28447-28468.
-
Crawford, J.H., et al. (1997), An Assessment of ozone photochemistry in the extratropical western north Pacific: Impact of continental outflow during the late winter/early spring., J. Geophys. Res., 102, 28,469-28.
-
Sandholm, S.T., et al. (1993), Arctic tropospheric observations related to NOy distributions and partitioning, J. Geophys. Res., 97, 16,481-16.
-
Talbot, R., et al. (1993), Summertime distributions and relations of reactive odd-nitrogen species and NOy in the troposphere over Canada, J. Geophys. Res..
-
Jacob, D.J., et al. (1992), Summertime Photochemistry in the Arctic Troposphere, J. Geophys. Res., 97, 16421-16432.
-
Wofsy, S., et al. (1991), Factors Regulating Atmospheric Chemistry in the Arctic and Subarctic: Natural Fires, Midlatitude Industrial Sources, and Stratospheric Inputs, J. Geophys. Res., In press.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.