Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continent and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and develop a scale-aware eddy transport formulation for mesoscale and climate models. We show that the top-hat approach significantly underestimates updraft eddy transport of water vapor, although the top-hat approach represents the downdraft eddy transport of water vapor well. The three-draft approach evidently improves the parameterized updraft eddy transport because it accounts for the internal variability of updrafts. Based on the results from CRM simulations, we propose and recommend a simplified three-draft formulation that considers three updrafts and one downdraft for eddy transport and it has the following three advantages: (1) no assumption of cloud fractional area, σ, far less than 1, (2) a simple formulation, and (3) accurate representation of CRM-simulated eddy flux across scales. Our results also show that inclusion of finite σ in the eddy transport formulation as proposed by Arakawa et al. does not significantly improve the parameterized eddy transport of water vapor across scales, compared to the conventional formulation in which σ <<1 is assumed. We find that it is the internal variability of updrafts that contributes to the poor performance of the top-hat approach at the gray-zone scales for the full σ range, and using the three-updraft approach much improves the performance.