Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
In Naud et al., a compositing method was utilized with CloudSat–CALIPSO observations to obtain mean transects of cloud vertical distribution and surface precipitation across cold fronts, and to examine their sensitivity to the large-scale properties of the parent extratropical cyclone. This reply demonstrates the value of compositing for evaluating numerical models, and presents additional results that address the issue of the sensitivity of the initial results to the frontal detection methodology and the potential misclassification of occlusions as cold fronts. Here a sensitivity study of the cold front composite transects of cloud cover to the input datasets or the method utilized to locate the cold fronts demonstrates that these composite transects are robust and only marginally sensitive to cold front location methods. The same conclusion is reached for the robustness of the contrast between Northern and Southern Hemisphere cloud transects. While occlusions cannot directly be flagged within the database at this point, comparisons of transects obtained for subsets of cyclones of different age indicate that the misclassification of occluded fronts as cold fronts does not explain the predominance of cloud and precipitation on the warm side of the cold fronts. The strong signal on the warm side might be better explained by a predominance of forward sloping cold fronts, or the presence of the warm conveyor belt.