Warning message

Member access has been temporarily disabled. Please try again later.
The CR-AVE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
CRAVE
CR AVE
Associated content: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

JPL Laser Hygrometer

The JPL Laser Hygrometer (JLH) is an autonomous spectrometer to measure atmospheric water vapor from airborne platforms. It is designed for high-altitude scientific flights of the NASA ER-2 aircraft to monitor upper tropospheric (UT) and lower stratospheric (LS) water vapor for climate studies, atmospheric chemistry, and satellite validation. JLH will participate in the NASA SEAC4RS field mission this year. The light source for JLH is a near-infrared distributed feedback (DFB) tunable diode laser that scans across a strong water vapor vibrational-rotational combination band absorption line in the 1.37 micrometer band. Both laser and detector are temperature‐stabilized on a thermoelectrically-cooled aluminum mount inside an evacuated metal housing. A long optical path is folded within a Herriott Cell for sensitivity to water vapor in the UT and LS. A Herriott cell is an off-axis multipass cell using two spherical mirrors [Altmann et al., 1981; Herriott et al., 1964]. The laser beam enters the Herriott cell through a hole in the mirror that is closest to the laser. The laser beam traverses many passes of the Herriott cell and then returns through the same mirror hole to impinge on a detector.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

High-Sensitivity Fast-Response CO2 Analyzer

The high-sensitivity fast response CO2 instrument measures CO2 concentrations in situ using the light source, gas cells, and solid-state detector from a modified nondispersive infrared CO2 analyzer (Li-Cor, Inc., Lincoln, NE). These components are stabilized along the detection axis, vibrationally isolated, and housed in a temperature-controlled pressure vessel. Sample air enters a rear-facing inlet, is preconditioned using a Nafion drier (to remove water vapor), then is compressed by a Teflon diaphragm pump. A second water trap, using dry ice, reduces the sample air dewpoint to less than 70C prior to detection. The CO2 mixing ratio of air flowing through the sample gas cell is determined by measuring absorption at 4.26 microns relative to a reference gas of known concentration. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, with a low-span and a high-span gas every 20 minutes, and with a long-term primary standard every 2 hours. The long-term standard is used sparingly and serves as a check of the flight-to-flight accuracy and precision of the measurements, augmented by ground-based calibrations before and after flights.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Harvard Lyman-α Photofragment Fluorescence Hygrometer

The Harvard Water Vapor (HWV) instrument combines two independent measurement methods for the simultaneous in situ detection of ambient water vapor mixing ratios in a single duct. This dual axis instrument combines the heritage of the Harvard Lyman-α photo-fragment fluorescence instrument (LyA) with the newly designed tunable diode laser direct absorption instrument (HHH). The Lyman-α detection axis functions as a benchmark measurement, and provides a requisite link to the long measurement history of Harvard Lyman-α aboard NASA’s WB-57 and ER-2 aircraft [Weinstock et al., 1994; Hintsa et al., 1999; Weinstock et al., 2009]. The inclusion of HHH provides a second high precision measurement that is more robust than LyA to changes in its measurement sensitivity [Smith et al., in preparation]. The simultaneous utilization of radically different measurement techniques facilitates the identification, diagnosis, and constraint of systematic errors both in the laboratory and in flight. As such, it constitutes a significant step toward resolving the controversy surrounding water vapor measurements in the upper troposphere and lower stratosphere.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Harvard Integrated Cavity Output Spectroscopy

The Harvard CRDS/ICOS instrument is an absorption spectrometer that uses the relatively new and highly sensitive techniques of integrated cavity output spectroscopy (ICOS) and cavity ringdown spectroscopy (CRDS) with a high-finesse optical cavity and a cw quantum cascade laser (QCL) source. The primary spectroscopic technique employed is ICOS, in which intra-cavity absorption is measured from the steady-state output of the cavity. Light from a high power, tunable, single mode, solid-state laser source is coupled into a cavity consisting of two concave, highly reflective mirrors (R ≈ 0.9999), through which air continuously flows. The laser is scanned over a spectral region of 1–2 cm-1 containing an absorption feature, and the cavity output is detected by an LN2-cooled HgCdTe detector. The resultant output approximates an absorption spectrum with an effective pathlength of > 5 km, far greater than that of standard multipass Herriott or White cells.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Multiple-Angle Aerosol Spectrometer Probe

The Multiple-Angle Aerosol Spectrometer Probe (MASP) determines the size and concentration of particles from about 0.3 to 20 microns in diameter and the index of refraction for selected sizes. Size is determined by measuring the light intensity scattered by individual particles as they transit a laser beam of 0.780µm wavelength. Light scattered from particles into a cone from 30 to 60 degrees forward and 120 to 150 degrees backwards is reflected by a mangin mirror through a condensing lens to the detectors. A comparison of the signals from the open aperture detector and the masked aperture detector is used to accept only those particles passing through the center of the laser beam. The size of the particle is determined from the total scattered light. The index of refraction of particles can be estimated from the ratio of the forward to back scatter signals. A calibration diode laser is pulsed periodically during flight to ensure proper operation of the electronics. The shrouded inlet minimizes angle of attack effects and maintains isokinetic flow through the sensing volume so that volatilization of particles is eliminated.

Instrument Type: 
Point(s) of Contact: 

Multi-sample Aerosol Collection System

The Multiple Aerosol Collection System contains an impactor collector which permits the collection of particles on electron microscope grids for later chemical-constituent analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collects efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 micron at WB-57 cruise altitudes. As many as 24 samples can be collected in a flight.

Point(s) of Contact: 

Cloud Physics Lidar

The Cloud Physics Lidar, or CPL, is a backscatter lidar designed to operate simultaneously at 3 wavelengths: 1064, 532, and 355 nm. The purpose of the CPL is to provide multi-wavelength measurements of cirrus, subvisual cirrus, and aerosols with high temporal and spatial resolution. Figure 1 shows the entire CPL package in flight configuration. The CPL utilizes state-of-the-art technology with a high repetition rate, low pulse energy laser and photon-counting detection. Vertical resolution of the CPL measurements is fixed at 30 m; horizontal resolution can vary but is typically about 200 m. The CPL fundamentally measures range-resolved profiles of volume 180-degree backscatter coefficients. From the fundamental measurement, various data products are derived, including: time-height crosssection images; cloud and aerosol layer boundaries; optical depth for clouds, aerosol layers, and planetary boundary layer (PBL); and extinction profiles. The CPL was designed to fly on the NASA ER-2 aircraft but is adaptable to other platforms. Because the ER-2 typically flies at about 65,000 feet (20 km), onboard instruments are above 94% of the earth’s atmosphere, allowing ER-2 instruments to function as spaceborne instrument simulators. The ER-2 provides a unique platform for atmospheric profiling, particularly for active remote sensing instruments such as lidar, because the spatial coverage attainable by the ER-2 permits studies of aerosol properties across wide regions. Lidar profiling from the ER-2 platform is especially valuable because the cloud height structure, up to the limit of signal attenuation, is unambiguously measured.

Instrument Type: 
Point(s) of Contact: 

Configurable Scanning Submillimeter-wave Instrument/Radiometer

The Configurable Scanning Submillimeter-wave Instrument/Radiometer (CoSSIR) is an airborne, 16-channel total power imaging radiometer that was primarily developed for the measurement of ice clouds. CoSSIR was first flown in CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) in 2002, followed by CR-AVE (Costa Rica Aura Validation Experiment) in 2006, and TC4 (Tropical Composition, Cloud and Climate Coupling Experiment) in 2007. For CRYSTAL-FACE and CR-AVE, CoSSIR had 15 channels centered at 183±1, 183±3, 183±6.6, 220, 380±.8, 380±1.8, 380±3.3, 380±6.2, 487.25±0.8, 487.25±1.2, 487.25±3.3, and 640 GHz, where the three 487 GHz channels were dual-polarized (vertical and horizontal). For TC4, the 487 GHz channels were removed, 640 GHz was made dual-polarized, and an 874 GHz channel was added.

In 2022, CoSSIR was completely updated with new receivers under funds through the Airborne Instrument Technology Transition (AITT) to improve measurement accuracy and enable CoSSIR to be a stand-alone sensor that no longer shared a scan pedestal with its millimeter-wave sibling, CoSMIR. Frequencies were selected for CoSSIR to optimize snow and cloud ice profiling, and dual-polarization capability was added for all frequencies to provide information on particle size and shape. New channels are centered at 170.5, 177.3, 180.3, 182.3, 325±11.3, 325±3.55, 325±0.9, and 684 GHz. The updated CoSSIR flew for the first time in the 2023 deployment of IMPACTS (Investigation of Microphysics and Precipitation for Atlantic Coast Threatening Snowstorms) and operated nominally for the entire campaign, collecting a wide variety of observations over different types of clouds and precipitation.

All the receivers and radiometer electronics are housed in a small cylindrical scan head (21.5 cm in diameter and 28 cm in length) that is rotated by a two-axis gimbaled mechanism capable of generating a wide variety of scan profiles. Two calibration targets, one maintained at ambient (cold) temperature and another heated to a hot temperature of about 323 K, are closely coupled to the scan head and rotate with it about the azimuth axis. Radiometric signals from each channel are sampled at 10 ms intervals. These signals and housekeeping data are fed to the main computer in an external electronics box.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Cloud Radar System

Clouds are a key element in the global hydrological cycle, and they have a significant role in the Earth’s energy budget through its influence on radiation budgets. Climate model simulations have demonstrated the importance of clouds in moderating and forcing the global energy budget. Despite the crucial role of clouds in climate and the breadth of our current knowledge, there are still many unanswered details. An improved understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds that includes their physical dimensions, vertical and horizontal spatial distribution, detailed microphysical properties, and the dynamical processes producing them. However, the lack of fine-scale cloud data is apparent in current climate model simulations.

The Cloud Radar System (CRS) is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution.

Instrument Type: 
Point(s) of Contact: 

Pages

Subscribe to RSS - CR-AVE