Warning message

Member access has been temporarily disabled. Please try again later.
The AAOE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Stratospheric air intrusions promote global-scale new particle formation.Science

Zhang, J., X. Gong, E. Crosbie, G. S. Diskin, K. Froyd, S. R. Hall, A. Kupc, R. Moore, J. Peischl, A. Rollins, J. Schwarz, M. Shook, C. Thompson, K. Ullmann, C. Williamson, A. Wisthaler, L. Xu, L. D. Ziemba, C. Brock, and J. Wang (2024), Stratospheric air intrusions promote global-scale new particle formation.Science, Wang, 385, 210-216, doi:10.1126/science.adn2961.
Abstract: 

New particle formation in the free troposphere is a major source of cloud condensation nuclei globally. The prevailing view is that in the free troposphere, new particles are formed predominantly in convective cloud outflows. We present another mechanism using global observations. We find that during stratospheric air intrusion events, the mixing of descending ozone-rich stratospheric air with more moist free tropospheric background results in elevated hydroxyl radical (OH) concentrations. Such mixing is most prevalent near the tropopause where the sulfur dioxide (SO2) mixing ratios are high. The combination of elevated SO2 and OH

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition
Tropospheric Composition Program (TCP)
Mission: 
ATom