Warning message

Member access has been temporarily disabled. Please try again later.
The AAOE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Global dust distribution from improved thin dust layer detection using A-train...

Luo, T., Z. Wang, D. Zhang, X. Liu, Y. Wang, and R. Yuan (2015), Global dust distribution from improved thin dust layer detection using A-train satellite lidar observations, Geophys. Res. Lett., 42, doi:10.1002/2014GL062111.
Abstract: 

A new dust detection algorithm was developed to take advantage of strong dust signals in the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm perpendicular channel to more accurately identify optically thin dust layer boundaries. Layer mean particulate depolarization ratios and improved thin ice cloud detections by combining CALIPSO and CloudSat products were used to further refine

 the dust mask. Three year global mean results show that the new method detects dust occurrences totaltotal

detected dust case number

observation number of 0.12 and 0.028 below and above 4 km altitudes, while CALIPSO Level 2 products reported 0.07 and 0.012, respectively. The improvements are mainly in weak source and transporting regions, and the upper troposphere, where optically thin, but significant dust layers from the point of view of aerosol-cloud interactions are dominated. The results can help us to better understand global dust transportation and dust-cloud interactions and improve model simulations.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
CloudSat
CALIPSO