Organization
NASA Goddard Space Flight Center
University of Maryland, Baltimore County
Email
Business Address
Joint Center for Earth System Technology
Baltimore, MD 21228
United States
First Author Publications
-
Várnai, T., and A. Marshak (2021), Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations, Remote Sens., 13, 1151, doi:10.3390/rs13061151.
-
Várnai, T., et al. (2019), Developing an Aircraft-Based Angular Distribution Model of Solar Reflection from Wildfire Smoke to Aid Satellite-Based Radiative Flux Estimation, doi:10.3390/rs11131509.
-
Várnai, T., and A. Marshak (2018), Satellite Observations of Cloud-Related Variations in Aerosol Properties, Atmosphere, 9, 430, doi:10.3390/atmos9110430.
-
Várnai, T., et al. (2017), Observation-Based Study on Aerosol Optical Depth and Particle Size in Partly Cloudy Regions, J. Geophys. Res., 122, 10,013-10,024, doi:10.1002/2017JD027028.
-
Várnai, T., and A. Marshak (2015), Effect of cloud fraction on near-cloud aerosol behavior in the MODIS atmospheric correction ocean color product. , Remote Sens., 7, 5283-5299, doi:10.3390/rs70505283.
-
Várnai, T., and A. Marshak (2014), Near-cloud aerosol properties from the 1 km resolution MODIS ocean product, J. Geophys. Res., 119, 1546-1554, doi:10.1002/2013JD020633.
-
Várnai, T., et al. (2013), Multi-satellite aerosol observations in the vicinity of clouds, Atmos. Chem. Phys., 13, 3899-3908, doi:10.5194/acp-13-3899-2013.
-
Várnai, T., and A. Marshak (2012), Analysis of co-located MODIS and CALIPSO observations near clouds, Atmos. Meas. Tech., 5, 389-396, doi:10.5194/amt-5-389-2012.
-
Várnai, T., and A. Marshak (2011), Global CALIPSO Observations of Aerosol Changes Near Clouds, Geosci. Remote Sens. Lett., 8, 19-23, doi:10.1109/LGRS.2010.2049982.
-
Várnai, T., and A. Marshak (2009), MODIS observations of enhanced clear sky reflectance near clouds, Geophys. Res. Lett., 36, L06807, doi:10.1029/2008GL037089.
-
Várnai, T., and A. Marshak (2007), View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 112, D06203, doi:10.1029/2005JD006912.
-
Várnai, T., and A. Marshak (2003), A method for analyzing how various parts of clouds influence each other’s brightness, J. Geophys. Res., 108, 4706, doi:10.1029/2003JD003561.
-
Várnai, T., and A. Marshak (2002), Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thicknéss Rétrievals, J. Atmos. Sci., 59, 1607-1618.
-
Várnai, T., and A. Marshak (2001), Statistical Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensionál Radíative Effects, J. Atmos. Sci., 58, 1540-1548.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Gatebe, C.K., et al. (2021), A new measurement approach for validating satellite-based above-cloud aerosol optical depth, Atmos. Meas. Tech., 14, 1405-1423, doi:10.5194/amt-14-1405-2021.
-
Gautam, R., et al. (2016), Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements, J. Geophys. Res., 121, doi:10.1002/2016JD025309.
-
Wen, G., et al. (2016), Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances, J. Geophys. Res., 121, 9661-9674, doi:10.1002/2016JD025021.
-
Marshak, A., et al. (2014), Extending 3D near-cloud corrections from shorter to longer wavelengths, J. Quant. Spectrosc. Radiat. Transfer, 147, 79-85, doi:10.1016/j.jqsrt.2014.05.022.
-
Yang, W., et al. (2014), CALIPSO observations of near-cloud aerosol properties as a function of cloud fraction, Geophys. Res. Lett., 41, doi:10.1002/2014GL061896.
-
Wen, G., et al. (2013), Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res., 118, 1-14, doi:10.1002/jgrd.50617.
-
Yang, W., et al. (2013), Shape-induced gravitational sorting of Saharan dust during transatlantic voyage: Evidence from CALIOP lidar depolarization measurements, Geophys. Res. Lett., 40, 1-6, doi:10.1002/grl.50603.
-
Chiu, J.C., et al. (2012), Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network, Atmos. Chem. Phys., 12, 10313-10329, doi:10.5194/acp-12-10313-2012.
-
Gatebe, C.K., et al. (2012), Taking the pulse of pyrocumulus clouds, Atmos. Environ., 52, 121-130, doi:10.1016/j.atmosenv.2012.01.045.
-
Yang, W., et al. (2012), CALIPSO observations of transatlantic dust: vertical stratification and effect of clouds, Atmos. Chem. Phys., 12, 11339-11354, doi:10.5194/acp-12-11339-2012.
-
Yang, W., et al. (2012), Effect of CALIPSO cloud–aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds, Atmos. Res., 116, 134-141, doi:10.1016/j.atmosres.2012.03.013.
-
Yang, Y., et al. (2011), Cloud Impact on Surface Altimetry From a Spaceborne 532-nm Micropulse Photon-Counting Lidar: System Modeling for Cloudy and Clear Atmospheres, IEEE Trans. Geosci. Remote Sens., 49, 4910-4919, doi:10.1109/TGRS.2011.2153860.
-
Evans, F., et al. (2008), The Potential for Improved Boundary Layer Cloud Optical Depth Retrievals from the Multiple Directions of MISR, J. Atmos. Sci., 65, 3179-3196, doi:10.1175/2008JAS2627.1.
-
Marshak, A., et al. (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
-
Cahalan, B., et al. (2005), THOR—Cloud thickness from offbeam lidar returns, J. Atmos. Oceanic. Technol., 22, 605-627.
-
Cahalan, B., et al. (2005), The I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Am. Meteorol. Soc., 1275-1293, doi:10.1175/BAMS-86-9-1275.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.