The CPEX-AW website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Cameron Homeyer
Business Address:
120 David L. Boren Blvd. Suite 5900
Norman, OK 73072-7307
United StatesFirst Author Publications:
- Homeyer, C., et al. (2023), Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign, Geophys. Res. Lett..
- Homeyer, C., and K. Bowman (2021), A 22-Year Evaluation of Convection Reaching the Stratosphere Over the United States, J. Geophys. Res., 126, doi:10.1029/2021JD034808.
- Homeyer, C., J. D. McAuliffe, and K. Bedka (2017), On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection, J. Atmos. Sci., 74, 1617-1633, doi:10.1175/JAS-D-16-0269.1.
Co-Authored Publications:
- Gordon, A., et al. (2024), Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes, Atmos. Chem. Phys., doi:10.5194/acp-24-7591-2024.
- Cuchiara, G. C., et al. (2023), Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC 4RS Case Study, J. Geophys. Res..
- Gordon, A., and C. Homeyer (2022), Sensitivities of Cross-Tropopause Transport in Midlatitude Overshooting Convection to the Lower Stratosphere Environment, J. Geophys. Res., 127, e2022JD036713, doi:10.1029/2022JD036713.
- Murillo, E., and C. Homeyer (2022), What Determines Above-Anvil Cirrus Plume Infrared Temperature?, J. Atmos. Sci., 79, 3181-3194, doi:10.1175/JAS-D-22-0080.1.
- Cuchiara, G. C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
- Sandmæl, T. N., et al. (2020), Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms, J. Appl. Meteor. Climat., doi:10.1175/JAMC-D-18-0241.1.
- Starzec, M., G. Mullendore, and C. Homeyer (2020), Retrievals of Convective Detrainment Heights Using Ground-Based Radar Observations, J. Geophys. Res., 125, e2019JD031164, doi:10.1029/2019JD031164.
- Apke, J. M., et al. (2018), Relationships between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector-Derived Flow, Mon. Wea. Rev., 146, 3461-3480, doi:10.1175/MWR-D-18-0119.1.
- Bedka, K., et al. (2018), The Above-Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery, Wea. Forecasting, 33, 1159-1181, doi:10.1175/WAF-D-18-0040.1.
- Smith, J. B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
- Sorooshian, A., et al. (2017), Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res., 122, 4565-4577, doi:10.1002/2017JD026638.
- Apel, E., et al. (2015), Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J. Geophys. Res., 120, 2505-2523, doi:10.1002/2014JD022121.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.