Organization:
Georgia Institute of Technology
Co-Authored Publications:
- Yang, Y., et al. (2024), pubs.acs.org/estair Article Indoor−Outdoor Oxidative Potential of PM2.5 in Wintertime Fairbanks, Alaska: Impact of Air Infiltration and Indoor Activities, Environ. Sci. Tech. Air, doi:10.1021/acsestair.3c00067.
- Yang, Y., et al. (2024), pubs.acs.org/estair Article Assessing the Oxidative Potential of Outdoor PM2.5 in Wintertime Fairbanks, Alaska, Environ. Sci. Tech. Air, doi:10.1021/acsestair.3c00066.
- Kahn, R., et al. (2023), Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within-The-Atmosphere Observations: A Three-Way Street, Rev. Geophys., 61, e2022RG000796, doi:10.1029/2022RG000796.
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Kacarab, M., et al. (2020), Biomass Burning Aerosol as a Modulator of Droplet Number in the Southeast Atlantic Region, Atmos. Chem. Phys., 20, 3029-3040, doi:10.5194/acp-20-3029-2020.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Fanourgakis, G. S., et al. (2019), Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos. Chem. Phys., 19, 8591-8617, doi:10.5194/acp-19-8591-2019.
- Zhang, Y., et al. (2017), Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere, Nature Geoscience, 10, 486, doi:10.1038/NGEO2960.
- Seinfeld, J. H., et al. (2016), COLLOQUIUM INTRODUCTION Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system, Proc. Natl. Acad. Sci., 113, doi:10.1073/pnas.1514043113.
- Zamora, L., et al. (2016), Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic, Atmos. Chem. Phys., 16, 715-738, doi:10.5194/acp-16-715-2016.
- Forrister, H., et al. (2015), Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 4623-4630, doi:10.1002/2015GL063897.
- Shinozuka, Y., et al. (2015), The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates, Atmos. Chem. Phys., 15, 7585-7604, doi:10.5194/acp-15-7585-2015.
- Shinozuka, Y., et al. (2015), The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates, Atmos. Chem. Phys., 15, 7585-7604, doi:10.5194/acp-15-7585-2015.
- Model, S., et al. (2014), Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing, Geosci. Model Dev., 7, 1733-1766, doi:10.5194/gmd-7-1733-2014.
- DeLeon-Rodriguez, N., et al. (2013), Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1212089110.
- Lathem, T. L., et al. (2013), Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008, Atmos. Chem. Phys., 13, 2735-2756, doi:10.5194/acp-13-2735-2013.
- Ryerson, T. B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
- Liu, X., et al. (2012), Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12061-12079, doi:10.5194/acp-12-12061-2012.
- Brock, C., et al. (2011), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423-2453, doi:10.5194/acp-11-2423-2011.
- Chen, W., et al. (2010), Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100, J. Geophys. Res., 115, D12207, doi:10.1029/2008JD011619.
- Stroud, C. A., et al. (2007), Cloud Activating Properties of Aerosol Observed during CELTIC, J. Atmos. Sci., 64, 441-459, doi:10.1175/JAS3843.1.
- Roberts, G., and A. Nenes (2005), A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements, Aerosol Sci. Tech., 39, 206-221.
- Conant, W. C., et al. (2004), Aerosol--cloud drop concentration closure in warm cumulus, J. Geophys. Res., 109, D13204, doi:10.1029/2003JD004324.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.