Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Sustained Water Loss in California’s Mountain Ranges During Severe Drought...

Argus, D., F. W. Landerer, D. N. Wiese, H. Martens, Y. Fu, J. S. Famiglietti, B. F. Thomas, T. G. Farr, A. W. Moore, and M. M. Watkins (2017), Sustained Water Loss in California’s Mountain Ranges During Severe Drought From 2012 to 2015 Inferred From GPS, J. Geophys. Res., 122, doi:10.1002/2017JB014424.
Abstract: 

Drought struck California during 7 of the 9 years from 2007 to 2015, reducing the state’s available water resources. Pumping of Central Valley groundwater has produced spectacular land subsidence. Uplift of the adjacent Sierra Nevada mountains has been proposed to be either tectonic uplift or solid Earth’s elastic response to unloading of Central Valley groundwater. We find that of the 24 mm of uplift of the Sierra Nevada from October 2011 to October 2015, just 5 mm is produced by Central Valley groundwater loss, less than 2 mm is tectonic uplift, and 17 mm is solid Earth’s elastic response to water loss in the Sierra Nevada. We invert GPS vertical displacements recording solid Earth’s elastic response to infer changes in water storage across the western U.S. from January 2006 to October 2017. We find water changes to be sustained over periods of drought or heavy precipitation: the Sierra Nevada lost 15 ± 19 km3 of water during drought from October 2006 to October 2009, gained 18 ± 14 km3 of water during heavy precipitation from October 2009 to October 2011, and lost 45 ± 21 km3 of water during severe drought from October 2011 to October 2015 (95% confidence limits). Such large changes are not in hydrology models: snow accumulation in October is negligible and long-term soil moisture change is small. We infer that there must be large loss of either deep soil moisture or groundwater in river alluvium and in crystalline basement in the Sierra Nevada. The results suggest there to be parching of water in the ground during the summer of years of drought and seeping of melting snow into the Sierra Nevada in the spring of years of heavy precipitation.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Earth Surface & Interior Program (ESI)