This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics (30°S– 30°N) over a 3-yr period from September 2002 through August 2005. The analyses are based on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both the NASA Earth Observing System Terra and Aqua platforms. The present analysis is based on the MODIS collection-4 data products. The cloud products provide daily, weekly, and monthly mean cloud fraction, cloud optical thickness, cloud effective radius, cloud-top temperature, cloud-top pressure, and cloud effective emissivity, which is defined as the product of cloud emittance and cloud fraction. This study is focused on high-level ice clouds. The MODIS-derived high clouds are classified as cirriform and deep convective clouds using the International Satellite Cloud Climatology Project (ISCCP) classification scheme. Cirriform clouds make up more than 80% of the total high clouds, whereas deep convective clouds account for less than 20% of the total high clouds. High clouds are prevalent over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, tropical America, and South America. Moreover, land–ocean, morning– afternoon, and summer–winter variations of high cloud properties are also observed.
High cloud properties from three years of MODIS Terra and Aqua collection 4 data over the tropics
Hong, G., P. Yang, B. Gao, B.A. Baum, Y. Hu, M.D. King, and S.E. Platnick (2007), High cloud properties from three years of MODIS Terra and Aqua collection 4 data over the tropics, J. Appl. Meteor. Climat., 46, 1840-1856, doi:10.1175/2007JAMC1583.1.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Radiation Science Program (RSP)
Mission
Aqua-MODIS
Terra-MODIS
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.