Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Attribution of the 2020 surge in atmospheric methane by inverse analysis of...

Qu, Z., D. J. Jacob, Y. Zhang, L. Shen, D. J. Varon, X. Lu, T. Scarpelli, A. Bloom, J. Worden, and R. J. Parker (2022), Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations, Environ. Res. Lett., 17, 094003, doi:10.1088/1748-9326/ac8754.

Atmospheric methane mixing ratio rose by 15 ppbv between 2019 and 2020, the fastest growth rate on record. We conduct a global inverse analysis of 2019–2020 Greenhouse Gases Observing Satellite observations of atmospheric methane to analyze the combination of sources and sinks driving this surge. The imbalance between sources and sinks of atmospheric methane increased by 31 Tg a−1 from 2019 to 2020, representing a 36 Tg a−1 forcing (direct changes in methane emissions and OH concentrations) on the methane budget away from steady state. 86% of the forcing in the base inversion is from increasing emissions (82 ± 18% in the nine-member inversion ensemble), and only 14% is from decrease in tropospheric OH. Half of the increase in emissions is from Africa (15 Tg a−1) and appears to be driven by wetland inundation. There is also a large relative increase in emissions from Canada and Alaska (4.8 Tg a−1, 24%) that could be driven by temperature sensitivity of boreal wetland emissions.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Carbon Cycle & Ecosystems Program (CCEP)