Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Associated content: 

O3 Photometer (NOAA)

Ozone (O3) in the lower stratosphere (LS) is responsible for absorbing much of the biologically damaging ultraviolet (UV) radiation from the sunlight, and thus plays a critical role in protecting Earth's environment. By absorbing UV light, O3 heats the surrounding air, leading to the vertical stratification and dynamic stability that define the stratosphere. Manmade halogen compounds, such as CFCs, cause significant damage to the O3 layer in the LS and lead to the formation of the Antarctic ozone hole. Accurate measurement of O3 in the LS is the first step toward understanding and protecting stratospheric O3. The Ozone Photometer was designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS). Flown for thousands of hours onboard the NASA ER-2, NASA WB-57, and NSF GV high-altitude aircraft, this instrument has played a key role in improving our understanding of O3 photochemistry in the UT/LS. Furthermore, its accurate data has been used, and continues to be highly sought after, for satellite validation, and studies of radiation balance, stratosphere-troposphere exchange, and air parcel mixing. Contacts: Ru-Shan Gao, David Fahey, Troy Thornberry, Laurel Watts, Steve Ciciora

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF, WB-57 - JSC, Global Hawk - AFRC
Point(s) of Contact: 

Ozonesondes (NOAA)

NOAA Ozonesonde payloads include an Electrochemical Concentration Cell (ECC) ozonesonde, and a radiosonde to telemeter data to the ground and provide in situ measurements of temperature, pressure, relative humidity (surface to upper troposphere), and GPS coordinates. Sounding data typically reach an altitude of 28 km.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Balloonsondes (NOAA)

NOAA Balloonsonde payloads include a NOAA Frost Point Hygrometer (FPH), an Electrochemical Concentration Cell (ECC) ozonesonde, and a radiosonde to telemeter data to the ground and provide in situ measurements of temperature, pressure, relative humidity (surface to upper troposphere), and GPS coordinates. Sounding data typically reach an altitude of 28 km.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Balloon Borne Frost Point Hygrometer

The NOAA Balloon-borne Frost Point Hygrometer is based on the chilled mirror principle. The FPH measures the temperature of a small mirror controlled to maintain a constant, thin layer of frost. Under stable conditions the mirror temperature equals the frost point temperature of the air passing over the mirror. The frost coverage on the mirror is detected by a photodiode that senses the light of a light-emitting diode (LED) reflected off the mirror surface. Both optical components are rigorously temperature controlled, minimizing drift in the LED's intensity and the photodiode's sensitivity. The reflectance signal is used to control the temperature of the mirror using P-I-D logic. The mirror temperature is measured by a well-calibrated bead thermistor. The mirror temperature is telemetered to the ground station (along with a large array of other data) by a radiosonde that also provides in situ measurements of ambient temperature, pressure, relative humidity (only in the lower and middle troposphere), and GPS coordinates.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Whole Air Sampler

The Whole Air Sampler (WAS) collects samples from airborne platforms for detailed analysis of a wide range of trace gases. The compounds that are typically measured from the WAS includes trace gases with sources from industrial midlatitude emissions, from biomass burning, and from the marine boundary layer, with certain compounds (e.g. organic nitrates) that have a unique source in the equatorial surface ocean. The use of a broad suite of tracers with different sources and lifetimes provides powerful diagnostic information on air mass history and chemical processing that currently is only available from measurements from whole air samples. Previous deployments of the whole air sampler have shown that the sampling and analytical procedures employed by our group are capable of accessing the wide range of mixing ratios at sufficient precision to be used for tracer studies. Thus, routine measurement of species, such as methyl iodide, at <= 0.1 x 10-12 mole fraction, or NMHC at levels of a few x 10-12 mole fraction are possible. In addition to the tracer aspects of the whole air sampler measurements, we measure a full suite of halocarbon species that provide information on the role of short-lived halocarbons in the tropical UT/LS region, on halogen budgets in the UT/LS region, and on continuing increasing temporal trends of HFCs (such as 134a), HCFCs (such as HCFC 141b), PFCs (such as C2F6), as well as declining levels of some of the major CFCs and halogenated solvents. The measurements of those species that are changing rapidly in the troposphere also give direct indications of the age and origin of air entering the stratosphere.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Frost Point (NOAA)

The NOAA frost point instrument was designed to run unattended under the wing of NASA’s WB-57. An aircraft rated Stirling cooler provides cooling to 100 K. The cooler avoids consumables and provides a large temperature gradient that improves the response time. The vertical pylon houses the optics and provides aerodynamic pumping of the sample volume. At the bottom of the pylon there is a boundary layer plate and a vertical inlet that separates particles larger than 0.2 microns from the sampled air. There are two channels that use blue LEDs and scattered light to detect frost on the mirrors. Diamond mirrors are used for low thermal mass and high conductivity. The two channels are to be used to understand frost characteristics under flight conditions. High flow rates are used to decrease the shear boundary layer to facilitate diffusion through the boundary layer to the mirrors.

Measurements: 
Point(s) of Contact: 

PAN and Trace Hydrohalocarbon ExpeRiment

PANTHER uses Electron Capture Detection and Gas Chromatography (ECD-GC) and Mass Selective Detection and Gas Chromatography (MSD-GC) to measure numerous trace gases, including Methyl halides, HCFCs, PAN, N20, SF6, CFC-12, CFC-11, Halon-1211, methyl chloroform, carbon tetrachloride.

3 ECD (electron capture detectors), packed columns (OV-101, Porpak-Q, molecular sieve).

1 ECD with a TE (thermal electric) cooled RTX-200 capillary column.

2-channel MSD (mass selective detector). The MSD analyses two independent samples concentrated onto TE cooled Haysep traps, then passed through two temperature programmed RTX-624 capillary columns.

With the exception of PAN, all channels of chromatography are normalized to a stable in-flight calibration gas references to NOAA scales. The PAN data is normalized to an in-flight PAN source of ≈ 100 ppt with ±5 % reproducibility. This source is generated by efficient photolytic conversion of NO in the presence of acetone. Detector non-linearity is taken out by lab calibrations for all molecules.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

Cloud Particle Imager

The CPI records high-resolution (2.3 micron pixel size) digital images of particles that pass through the sample volume at speeds up to 200 m/s. In older models, CCD camera flashes up to 75 frames per second (fps), potentially imaging more than 25 particles per frame. More recent camera upgrades capable of bringing frame rate to nearly 500 fps. Real time image processing crops particle images from the full frame, eliminating blank space and compressing data by >1000:1. CPI is designed for ummanned use, with AI parameters to optimize performance without supervision.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Diode Laser Hygrometer

The DLH has been successfully flown during many previous field campaigns on several aircraft, most recently ACTIVATE (Falcon); FIREX-AQ, ATom, KORUS-AQ, and SEAC4RS (DC-8); POSIDON (WB-57); CARAFE (Sherpa); CAMP2Ex and DISCOVER-AQ (P-3); and ATTREX (Global Hawk). This sensor measures water vapor (H2O(v)) via absorption by one of three strong, isolated spectral lines near 1.4 μm and is comprised of a compact laser transceiver and a sheet of high grade retroflecting road sign material to form the optical path. Optical sampling geometry is aircraft-dependent, as each DLH instrument is custom-built to conform to aircraft geometric constraints. Using differential absorption detection techniques, H2O(v) is sensed along the external path negating any potential wall or inlet effects inherent in extractive sampling techniques. A laser power normalization scheme enables the sensor to accurately measure water vapor even when flying through clouds. An algorithm calculates H2O(v) concentration based on the differential absorption signal magnitude, ambient pressure, and temperature, and spectroscopic parameters found in the literature and/or measured in the laboratory. Preliminary water vapor mixing ratio and derived relative humidities are provided in real-time to investigators.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - POSIDON