Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Associated content: 

NOAA Water

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Advanced Whole Air Sampler

32 samples/flight (ER-2); 50 samples/flight (WB57); 90 samples/flight (Global Hawk)

Updated control system with remote control capability

Fill times
–14 km 30 – 40 sec
–16 km 40 – 50 sec
–18 km 50 – 60 sec
–20 km 100 – 120 sec (estimated)

Analysis in UM lab: GC/MS; GC/FID; GC/ECD

Instrument Type: 
Point(s) of Contact: 

O3 Photometer - UAS (NOAA)

Ozone (O3) in the lower stratosphere (LS) is responsible for absorbing much of the biologically damaging ultraviolet (UV) radiation from the sunlight, and thus plays a critical role in protecting Earth's environment. By absorbing UV light, O3 heats the surrounding air, leading to the vertical stratification and dynamic stability that define the stratosphere. Halogen species from anthropogenic compounds such as CFCs can cause significant damage to the O3 layer in the LS and have led to the formation of the Antarctic ozone hole. Accurate measurement of O3 in the LS is the first step toward understanding and protecting stratospheric O3. The UAS Ozone Photometer was designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS) onboard the NASA Global Hawk Unmanned Aircraft System (GH UAS) and other high altitude research platforms such as the ER-2 and WB-57. With a data rate of 2 Hz, the instrument can provide high-time-resolution, detailed information for studies of O3 photochemistry, radiation balance, stratosphere-troposphere exchange, and air parcel mixing in the UT/LS. Furthermore, its accurate data are useful for satellite retrieval validation.  Contacts: Troy Thornberry, Ru-Shan Gao

Instrument Type: 
Measurements: 
Point(s) of Contact: 

O3 Photometer (NOAA)

Ozone (O3) in the lower stratosphere (LS) is responsible for absorbing much of the biologically damaging ultraviolet (UV) radiation from the sunlight, and thus plays a critical role in protecting Earth's environment. By absorbing UV light, O3 heats the surrounding air, leading to the vertical stratification and dynamic stability that define the stratosphere. Manmade halogen compounds, such as CFCs, cause significant damage to the O3 layer in the LS and lead to the formation of the Antarctic ozone hole. Accurate measurement of O3 in the LS is the first step toward understanding and protecting stratospheric O3. The Ozone Photometer was designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS). Flown for thousands of hours onboard the NASA ER-2, NASA WB-57, and NSF GV high-altitude aircraft, this instrument has played a key role in improving our understanding of O3 photochemistry in the UT/LS. Furthermore, its accurate data has been used, and continues to be highly sought after, for satellite validation, and studies of radiation balance, stratosphere-troposphere exchange, and air parcel mixing. Contacts: Ru-Shan Gao, David Fahey, Troy Thornberry, Laurel Watts, Steve Ciciora

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF, WB-57 - JSC, Global Hawk - AFRC
Point(s) of Contact: 

Ozonesondes (NOAA)

NOAA Ozonesonde payloads include an Electrochemical Concentration Cell (ECC) ozonesonde, and a radiosonde to telemeter data to the ground and provide in situ measurements of temperature, pressure, relative humidity (surface to upper troposphere), and GPS coordinates. Sounding data typically reach an altitude of 28 km.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Balloonsondes (NOAA)

NOAA Balloonsonde payloads include a NOAA Frost Point Hygrometer (FPH), an Electrochemical Concentration Cell (ECC) ozonesonde, and a radiosonde to telemeter data to the ground and provide in situ measurements of temperature, pressure, relative humidity (surface to upper troposphere), and GPS coordinates. Sounding data typically reach an altitude of 28 km.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Balloon Borne Frost Point Hygrometer

The NOAA Balloon-borne Frost Point Hygrometer is based on the chilled mirror principle. The FPH measures the temperature of a small mirror controlled to maintain a constant, thin layer of frost. Under stable conditions the mirror temperature equals the frost point temperature of the air passing over the mirror. The frost coverage on the mirror is detected by a photodiode that senses the light of a light-emitting diode (LED) reflected off the mirror surface. Both optical components are rigorously temperature controlled, minimizing drift in the LED's intensity and the photodiode's sensitivity. The reflectance signal is used to control the temperature of the mirror using P-I-D logic. The mirror temperature is measured by a well-calibrated bead thermistor. The mirror temperature is telemetered to the ground station (along with a large array of other data) by a radiosonde that also provides in situ measurements of ambient temperature, pressure, relative humidity (only in the lower and middle troposphere), and GPS coordinates.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Whole Air Sampler

The Whole Air Sampler (WAS) collects samples from airborne platforms for detailed analysis of a wide range of trace gases. The compounds that are typically measured from the WAS includes trace gases with sources from industrial midlatitude emissions, from biomass burning, and from the marine boundary layer, with certain compounds (e.g. organic nitrates) that have a unique source in the equatorial surface ocean. The use of a broad suite of tracers with different sources and lifetimes provides powerful diagnostic information on air mass history and chemical processing that currently is only available from measurements from whole air samples. Previous deployments of the whole air sampler have shown that the sampling and analytical procedures employed by our group are capable of accessing the wide range of mixing ratios at sufficient precision to be used for tracer studies. Thus, routine measurement of species, such as methyl iodide, at <= 0.1 x 10-12 mole fraction, or NMHC at levels of a few x 10-12 mole fraction are possible. In addition to the tracer aspects of the whole air sampler measurements, we measure a full suite of halocarbon species that provide information on the role of short-lived halocarbons in the tropical UT/LS region, on halogen budgets in the UT/LS region, and on continuing increasing temporal trends of HFCs (such as 134a), HCFCs (such as HCFC 141b), PFCs (such as C2F6), as well as declining levels of some of the major CFCs and halogenated solvents. The measurements of those species that are changing rapidly in the troposphere also give direct indications of the age and origin of air entering the stratosphere.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

PAN and Trace Hydrohalocarbon ExpeRiment

PANTHER uses Gas Chromatography with Electron Capture Detection and (GC-ECD) and Gas Chromatography with Mass Selective Detection (GC-MSD) to measure numerous trace gases, including methyl halides, HCFCs, peroxyacetyl nitrate, nitrous oxide, SF6, CFC-12, CFC-11, Halon-1211, methyl chloroform, carbon tetrachloride.

3 ECDs with packed columns (OV-101, Porapak-Q, molecular sieve).

1 ECD with a TE (thermal electric) cooled RTX-200 capillary column.

2-channel MSD (mass selective detector). The MSD analyzes two independent samples air concentrated onto TE cooled Haysep traps, which are then heated to desorb the analytes and separate using through two temperature programmed RTX-624 capillary columns.

With the exception of PAN, all channels of chromatography are normalized to a stable in-flight calibration gas references to NOAA scales. The PAN data are normalized to an in-flight PAN source of ≈ 100 ppt with ±5 % reproducibility. This source is generated by efficient photolytic conversion of NO in the presence of acetone. Detector non-linearity is taken out by lab calibrations for all molecules.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Frost Point (NOAA)

The NOAA frost point instrument was designed to run unattended under the wing of NASA’s WB-57. An aircraft rated Stirling cooler provides cooling to 100 K. The cooler avoids consumables and provides a large temperature gradient that improves the response time. The vertical pylon houses the optics and provides aerodynamic pumping of the sample volume. At the bottom of the pylon there is a boundary layer plate and a vertical inlet that separates particles larger than 0.2 microns from the sampled air. There are two channels that use blue LEDs and scattered light to detect frost on the mirrors. Diamond mirrors are used for low thermal mass and high conductivity. The two channels are to be used to understand frost characteristics under flight conditions. High flow rates are used to decrease the shear boundary layer to facilitate diffusion through the boundary layer to the mirrors.

Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - POSIDON