Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset

Kim, D., M. Chin, H. Yu, T.F. Eck, A. Sinyuk, A. Smirnov, and B.N. Holben (2011), Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset, Atmos. Chem. Phys., 11, 10733-10741, doi:10.5194/acp-11-10733-2011.
Abstract

Dust optical properties over North Africa and the Arabian Peninsula are extracted from the quality assured multi-year datasets obtained at 14 sites of the Aerosol Robotic Network (AERONET). We select the data with (a) large aerosol optical depth (AOD ≥ 0.4 at 440 nm) and (b) small Angström exponent (Aext ≤ 0.2) for retaining high accuracy and reducing interference of non-dust aerosols. The result indicates that the major fraction of high aerosol optical depth days are dominated by dust over these sites even though it varies depending on location and time. We have found that the annual mean and standard deviation of single scattering albedo, asymmetry parameter, real refractive index, and imaginary refractive index for Saharan and Arabian desert dust is 0.944 ± 0.005, 0.752 ± 0.014, 1.498 ± 0.032, and 0.0024 ± 0.0034 at 550 nm wavelength, respectively. Dust aerosol selected by this method is less absorbing than the previously reported values over these sites. The weaker absorption of dust from this study is consistent with the studies using remote sensing techniques from satellite. These results can help to constrain uncertainties in estimating global dust shortwave radiative forcing.

PDF of Publication
Download from publisher's website
Research Program
Modeling Analysis and Prediction Program (MAP)
Radiation Science Program (RSP)

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.