Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Comparison of observed and simulated tropical cumuliform clouds by CloudSat and...

Dodson, J. B., D. A. Randall, and K. Suzuki (2013), Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM, J. Geophys. Res., 118, 1852-1867, doi:10.1002/jgrd.50121.
Abstract: 

We use CloudSat observations of boreal summer tropical ocean cumuliform clouds to evaluate the behavior of the non-parameterized cumuliform clouds in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), with a particular emphasis on deep convective clouds (DCCs). The CloudSat cloud mask and radar reflectivity profiles for cumuliform clouds are sorted by large-scale environmental variables taken from the Aqua satellite and NCEP/NCAR reanalysis. The variables are total precipitable water (TPW), sea surface temperature (SST), and 500 hPa vertical velocity (W500), representing the dynamical and thermodynamical environment in which the clouds form. The sorted CloudSat profiles are then compared with NICAM profiles simulated with the Quickbeam CloudSat simulator. We first use the cloud mask to examine the transition between shallow clouds and deep clouds rooted in the planetary boundary layer. We find that NICAM simulates this transition fairly realistically. However, the transition occurs at slightly higher TPW and W500 values than the observations show. This may be indication of NICAM’s inability to represent the formation of isolated narrow DCCs in marginally favorable environments. We then use simple metrics of the DCC-only radar reflectivity profiles (cloud top height, cloud top reflectivity gradient, maximum reflectivity) to quantitatively compare the observations with NICAM. The results show that while the observed and simulated results agree generally, there are some disagreements in key respects. There is disagreement on the sensitivity of cloud top height to environmental conditions and on the transition between shallow and deep clouds in environments marginally suitable for deep convection.

PDF of Publication: 
Download from publisher's website.
Mission: 
CloudSat