Investigation of the Coupling between Convective Physics and Catalytic Chemistry in the Stratosphere: A New Observing System

Jim Anderson, Dave Wilmouth, Jessica Smith
Harvard University
Cambridge, MA 02138
Background Points: Climate is changing far more rapidly than we thought even five years ago:

- Loss of permanent floating ice volume has decreased by 80% since 1980
- Greenland is undergoing remarkable changes in both surface melt and glacial structure
- The warming of the Arctic basin brings both a decrease in the temperature gradient between midlatitudes and the polar region
- Warming of the Arctic exposes the sequestered clathrates and permafrost that contain major carbon stores
- These structural changes are linked directly to feedbacks in the climate system that set the time scale for irreversible change
Focus on Convection
Scientific Motivation I

Water Vapor, Radiative Forcing & Climate Feedback

- Radiative impact significant even for ~1 ppmv changes in strat. H₂O
- As temperatures rise, water vapor in UT/LS increases --> +Feedback
- Convective contribution least well understood
- How will mechanisms that determine UT/LS H₂O change in response to climate forcing?
Scientific Motivation II
Convection, Water Vapor & Potential for Ozone Loss
Ozone profiles in the West Pacific

- Extranropical West Pacific ~30°
- Tropical Atlantic
- Tropical West Pacific
Lifetimes of key species for stratospheric composition

In days:
- Orange: "standard OH"
- Blue: "OH hole"

- **CH$_3$Br**: 1429 days
 - Standard OH: 340 days
 - OH hole: 18 days

- **CHBr$_3$**: 13 days
 - Standard OH: 69 days
 - OH hole: 25 days

- **CH$_2$Br$_2$**: 286 days

- **SO$_2$ gas phase**: 25 days

Bottom panel: Map showing OH from model with color scale ranging from 0 to 4e12 molecule/cm2.
Summary Points:

- It is now established through a combination of aircraft, NEXGEN radar network, and satellite observations that convection into the summertime stratosphere over the US is a common occurrence.

- The relationship between severe storms and penetration of convection into the stratosphere has developed to the point where knowledge of the relationship between CAPE generation, convective penetration and climate forcing has become a major unsolved scientific question.

- Lack of knowledge of the dynamical and chemical structure of the convective injection into the stratosphere has emerged as a major limitation to our understanding of severe storms, climate feedback and climate forcing. Both aircraft and satellites have observed the steep gradient in inorganic chlorine with respect to both altitude and latitude.

- Skin cancer is the most common form of cancer, the most rapidly growing category, and 5% drop in column ozone equates to ~15% fractional increase in incidence of skin cancer.
What is not known from the CloudSat/NEXRAD Observations:

• The structure of the 3D velocity fields within the storm structure in the stratosphere.
• The structure of the wave breaking events associated with the convective intrusion.
• The concentration of species co-injected with water by the convective event.
• Both the vapor phase and condensed phase H2O and HDO concentrations injected by the storm.
• The concentrations of (a) the reactive chemical precursors that are normally removed by photolysis or oxidation in the troposphere, and (b) chemical tracers brought in by the storm or drawn in by the perturbation associated with convection.
• The subsequent fate of the convectively injected chemical cocktail in the stratosphere in the hours and days following the convective injection.
So how does this link with what we know about catalytic destruction of ozone in the lower stratosphere?
March 11, 2000

Heterogeneous Conversion of Inorganic Chlorine

\[
\text{CIONO}_2 + \text{HCl} \rightarrow \text{Cl}_2 + \text{HONO}_2
\]

\[
\text{CIONO}_2 + \text{H}_2\text{O} \rightarrow \text{HOCl} + \text{HONO}_2
\]

\[
\text{HOCl} + \text{HCl} \rightarrow \text{Cl}_2 + \text{H}_2\text{O}
\]

90 mb pressure

- **SA = 2 \mu m^2/cm^3**
- **SA = 10 \mu m^2/cm^3**

H. E.

A.

B.
D

Stratocruiser

Suspended payload sampling

Δx = 150 km

Z_H (dBZ)
Focus on Convection
Summary of the Required Measurement

Molecule
ClO
BrO
ClONO₂
ClOOCI
N₂O
CH₄
CO
CO₂

Molecule
ClO
HCl
NO₂
H₂O
HDO
H₂O total
O₃
N₂O
CH₄
CO
CO₂
Science Team

- Jim Anderson
 Harvard
- Bill Gibson
 Harvard/SwRI
- Kerry Emanuel
 MIT
- Paul Newman
 NASA GSFC
- Steven Wofsy
 Harvard
- John Langford
 Aurora Flight Sciences
- Ken Bowman
 Texas A&M
- Eric Jensen
 NASA Ames
- Cameron Homeyer
 Univ. of Oklahoma
- Jesse Kroll
 MIT
- Mario Molina
 UCSD
- Ross Salawitch
 Univ. Maryland
- Jessica Smith
 Harvard
- David Wilmouth
 Harvard
- Stephen Leroy
 Harvard
- Ron Cohen
 UC Berkeley
END