SEAC⁴RS Remote Sensing Observations: AirMSPI

(*polarimetric)

Two Types of Sampling: Step-and-Stare and Continuous Sweep

Flying in the nose of NASA ER-2

Has flown since Oct 2010

Multi-angle viewing between ±67° using single-axis gimbal
AirMSPI DATA Status

SEAC4RS Level 1B2 imagery is publicly available at the NASA Langley ASDC
https://eosweb.larc.nasa.gov/project/airmspi/airmspi_table

- Steady improvement in radiometric, polarimetric, and geometric calibration
- Ellipsoid (mean sea level) and terrain projected
- Complete SEAC4RS dataset will be reprocessed in CY 2015
AirMSPI Collocations With Aeronet & DC-8

- AirMSPI step-and-stare images collocated with DC-8*: 17
- Aerosol-relevant AirMSPI sweeps collocated with DC-8*: 7
- Total SEAC4RS AirMSPI-AERONET collocations*: 18

*few to no clouds

Intensity (445, 555, 660)

August 18, 2013
Fowler at 19:06:12Z
AirMSPI Unconstrained Aerosol Retrieval Approaches

- JPL-developed RT code used as basis of aerosol retrieval algorithm, with support from Oleg Dubovik (Univ. of Lille)
- GRASP code is being used / evaluated in parallel

<table>
<thead>
<tr>
<th></th>
<th>JPL code (ocean, land)</th>
<th>GRASP (ocean, land)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward RT calculation method</td>
<td>Markov Chain + Doubling/Adding</td>
<td>Successive Orders of Scattering</td>
</tr>
<tr>
<td>Aerosol size model</td>
<td>Multi-bin, bimodal</td>
<td>Multi-bin, multi-modal*</td>
</tr>
<tr>
<td>Particle shape</td>
<td>Spherical</td>
<td>Non-spherical implemented</td>
</tr>
<tr>
<td>Refractive index</td>
<td>Different for each mode</td>
<td>Same for all modes</td>
</tr>
<tr>
<td>Land surface model</td>
<td>Modified RPV + Fresnel microfacet distribution</td>
<td>RPV + Maignan model</td>
</tr>
<tr>
<td>Ocean surface model</td>
<td>Cox-Munk + bio-optical</td>
<td>Cox-Munk*</td>
</tr>
<tr>
<td>Language</td>
<td>Matlab (for development), C++*</td>
<td>Fortran</td>
</tr>
<tr>
<td>Optimization approach</td>
<td>Multi-Patch retrieval algorithm (Dubovik, 2011)</td>
<td>Multi-Patch retrieval algorithm (Dubovik, 2011)</td>
</tr>
</tbody>
</table>
GRASP vs. Markov Chain

GRASP code

JPL code

AirMSPI
AOT 443 nm AOT 870 nm

AirMSPI
19:44:00
AERONET: USC_SEAPRISM
19:08:47
20:08:46

AirMSPI
19:44:00
AERONET: USC_SEAPRISM
19:08:47
20:08:46

AERONET 19:08 UTC
AERONET 20:08 UTC

AERONET 19:08 UTC
AERONET 20:08 UTC

Wavelegnth (nm)

Aerosol Optical Depth

AirMSPI 19:43 UTC (Spatially Averaged)
AirMSPI 19:43 UTC (nearby AERONET)
AERONET 19:08 UTC
AERONET 20:08 UTC

JPL code

AirMSPI
19:44:00
AERONET: USC_SEAPRISM
19:08:47
20:08:46

AirMSPI 19:43 UTC (Spatially Averaged)
AirMSPI 19:43 UTC (nearby AERONET)
AERONET 19:08 UTC
AERONET 20:08 UTC

Radius (r) [µm]

dV(r)/dln(r) [µm^3/µm^2]

AirMSPI
19:44:00
AERONET: USC_SEAPRISM
19:08:47
20:08:46

0.00 0.01 0.02 0.03 0.04 0.05

0 0.01 0.02 0.03 0.04 0.05

Radii [µm]
AirMSPI aerosol retrievals (Markov-Chain JPL code)

Cloud-free step and stare AirMSPI-AERONET collocations: 6

Fresno, August 2nd, 19:29 - Low AOD
Mingo, September 6, 22:41 - No aerosol speciated PM data
Baskin, September 9, 22:48 – DC-8 in the image – best AERONET collocation
September 9th, 2013, 22:48 - Baskin AERONET & DC-8
Work in progress is to inter-compare aerosol properties from AirMSPI with AERONET inversions and DC-8 measurements
Additional AirMSPI & DC-8 aerosol collocations

- **AirMSPI Step-and stare**
 - August 16\(^{th}\): Fowler, 19:06:12 – DC-8 profiles
 - August 19\(^{th}\): Thunder Basin & Kansas, 18:06:02 to 20:57:55
 - August 23\(^{d}\): SouthEast Arkansas, 16:12:15 and 19:40:15

- **AirMSPI Sweeps:**
 - August 6\(^{th}\): 20:40:40, Oregon fires
 - August 8\(^{th}\): 22:47:07, Dust over the Ocean
August 16th, 2013, 19:06Z – Jeff’s case

DC8 profiles are available
August 19th, 2013 – Ralph’s case

7 AirMSPI-DC-8 collocations:
- Lamont 16:23:30 – some clouds
- Thunder Basin (4) 18:06-19:11
- Southwest Kansas (2) 20:36, 20:57
August 19th, 2013, 18:06Z – Ralph’s case

Intensity (445, 555, 660)

AirMSPI, 2013-08-19T18:06:00Z, ThunderBasin

Aerosol Optical Depth

AirMSPI spatial mean. No AERONET available.

ThorunBasin
2013-08-19T180600Z

ER2–CPL SEAC4RS 19Aug13 532nm
August 8, 22:42-22:52 Dust over clear Ocean
August 8, 22:42-22:52 Dust Over Clear Ocean

Kalashnikova et al., 2011

\[\text{SZA} = 62^\circ \]

\[\text{SZA} = 60^\circ \]

Principal plane

AOD = 0.5

\[\lambda = 445 \text{nm} \]
Complete SEAC4RS dataset (L1B2 products) are available at: https://eosweb.larc.nasa.gov/project/airsmspi/airsmspi_table

Initial AirMSPI aerosol retrieval results from SEAC4RS are consistent with AERONET and 4STAR observations

SEAC4RS data provides an excellent opportunity for new polarimetric retrieval validation, and for evaluating polarimetric contributions to the study of aerosol direct and indirect effects

Please consider submitting to AGU session: “Advances in Atmospheric Aerosol and Cloud Characterization”
Absorbing Aerosol Index calculated using UV bands

\[A.I. = -100 \times \left[\log_{10}(I_{355}/I_{380})_{\text{meas}} - \log_{10}(I_{355}/I_{380})_{\text{calc}} \right] \]

indicates the presence of absorbing aerosols

Lidar data show low altitude aerosol layer (smoke from local fires)
September 9th, 2013: GRASP vs. Markov Chain

Xu retrieval

GRASP retrieval
August 23th, 2013, 19:40Z – Smoke above clouds
August 23rd, 2013: GRASP vs. Markov Chain

![Graph showing 4STAR (30 min average) vs. AirMSPI (spatial average) AOD](image)

![Intensity RGB Image (Nadir View)](image)