INTRODUCTION

The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-beam, dual-frequency, Doppler radar system designed for operation on board the Global Hawk aircraft unmanned aircraft system. The antennas of HIWRAP point downward and scan conically at two different tilt angles. This scanning geometry, which is unlike the traditional tail radar fore/aft scanning technique, presents unique challenges in retrieving the full three-dimensional wind field. We compare two well-established dual-Doppler retrieval techniques that were designed for the HIWRAP geometry.

COPLANE ANALYSIS

- utilizes natural coordinates of scanning geometry
- interpolates fore and aft observations to cylindrical coordinates (ρ, α, Y)
- calculates two components (U_1, U_2) in each α plane
- third component $U_{\alpha, rad}$ retrieved by integrating anelastic mass continuity equation

BOUNDARY CONDITIONS

- surface boundary condition: $\omega = 0$
- nadir boundary condition: $U_{\alpha, rad} = U_{\alpha, ref}$
 - assumes constant vertical velocity and linear cross-track winds across small distance

GLOBAL OPTIMIZATION ANALYSIS

- Minimizes cost function that includes differences between observations and solution
- Applies anelastic mass continuity and surface boundary conditions
- includes Laplacian function as filter for real data
- additional boundary condition* at nadir: $U_{\alpha, rad} = U_{\alpha, ref}$

SIMULATED DATA

- Simulated HIWRAP scan of MM5 simulation of Hurricane Rita
- Tilt angle of 40°

ROOT-MEAN-SQUARE ERRORS (m/s)

<table>
<thead>
<tr>
<th>Distance (km)</th>
<th>Along-track velocity</th>
<th>Vertical velocity</th>
<th>Cross-track velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.820</td>
<td>0.830</td>
<td>0.855</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>0.830</td>
<td>0.855</td>
</tr>
<tr>
<td>30</td>
<td>2.0</td>
<td>0.830</td>
<td>0.855</td>
</tr>
</tbody>
</table>

DATA FROM HS3 CAMPAIGN

- Hurricane Ingrid
- Reflectivity at nadir (Ku band, outer beam)

CONCLUSIONS

- Both dual-Doppler methods performed well in retrieving the simulated wind field.
- In the simulation, the coplane analysis had slightly lower cross-track velocity errors, while the global optimization analysis had slightly lower along-track velocity errors.
- Both schemes performed similarly well with vertical velocity retrieval.
- For the HS3 data, both schemes retrieved similar wind fields at nadir, indicating the robustness of the observation patterns.
- Away from nadir, retrievals generally agree above 4 km, but deviate below this level in the unobserved u-θ wind component.
- Global optimization provides a solution that is consistent with the radar measurements including measurement errors that are spread across the wind components.
- The coplane analysis solution remains consistent with observations for the observed wind components, while the unobserved component highlights where non-physical observations occur.