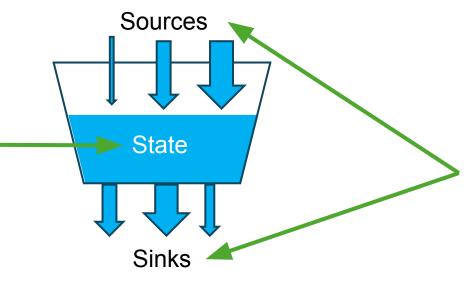

Overview of the Mid-Atlantic Gas Emissions Quantification (MAGEQ) Campaign for Stakeholders

US Greenhouse Gas Center Stakeholder Engagement Team

What is MAGEQ?

MAGEQ is the coordination of independent missions and assets (ground-based, airborne, remote-sensing) to:

- Support and augment observations for synergistic science
- Prototype and cross-validate tiered observing strategies
- Strengthen partnerships between scientists and stakeholders


MAGEQ Objectives

- 1. Demonstrate and compare emission measurements in priority regions petrochemical, urban, agricultural, and wetland
- 2. Provide regional context for longer-term ground observations
- Prototype methodology for scaling from intensive ground and airborne measurements to regional, annual emission estimates
- 4. Deliver application-ready data to stakeholders

Near term priorities

Longer term opportunities

Normally, we measure this (e.g., gas concentration)

Sometimes, what we really want to know is this (e.g., emission rates)

Aircraft Observations and Ground Partners

	Platform	Measurements	Pls
NASA	B200-FX in situ	NO ₂ , HCHO, O ₃ , CO ₂ , CH ₄ , H ₂ O, CO Eddy covariance fluxes	Glenn Wolfe
NASA	P-3 in situ	NO, NO_2 , O_3 , VOCs (WAS), CO, CO_2 , CH_4 , N_2O , H_2O , OCS, Aerosol composition and size	Jack Dibb
NDAR	Twin Otter (TO) in situ + remote	Doppler lidar: wind profiles, PBL height In situ: NO, NO $_2$, NO $_y$, O $_3$, CO, CO $_2$, CH $_4$, C $_2$ H $_6$	Steve Brown Xinrong Ren
NASA	G-III remote	MethaneAIR: $\mathrm{CH_4}$ and $\mathrm{CO_2}$ columns HALO: $\mathrm{CH_4}$ column, aerosol profiles, PBL height	Amin Nehrir Steve Wofsy
זבר	B200-AV remote	AVIRIS-3: CO2/CH4 enhancements, ecosystem composition and function, water quality	Michael Eastwood Rob Green
NASA	A90 remote	G-LiHT: Ecosystem composition, 3D structure and function at meter-scale resolution	Bruck Cook
NIST PGN	Ground	Pandora: NO ₂ and HCHO columns, profiles TOLNET: O ₃ profiles EM-27: CO ₂ , CH ₄ columns NIST Urban testbed DOE CoURAGE NOAA, JHU Mobile Labs	Tom Hanisco John Sullivan Jason St. Clair Anna Karion Ken Davis Pete DiCarlo

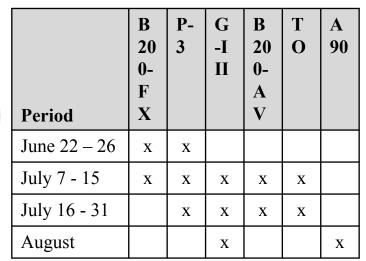
DEPLOYMENT SCHEDULE

	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su
	6/22	6/23	6/24	6/25	6/26	6/27	6/28	6/29	6/30	7/1	7/2	7/3	7/4	7/5	7/6
B200-FX	SARP East							SARP West							
P-3			SARF	P East					SARP West						
Twin Otter															
B200-AV															
G-III															
A90-GLiHT															

Мо	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th
7/7	7/8	7/9	7/10	7/11	7/12	7/13	7/14	7/15	7/16	7/17	7/18	7/19	7/20	7/21	7/22	7/23	7/24	7/25	7/26	7/27	7/28	7/29	7/30	7/31
			١	/AMO	S										1									
MAGEQ																								
AIRMAPS/BAQMS																								
																			MAG	GEQ				
APMAC																								

8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 8/9 8/10 8/11 8/12 8/13 8/14	8/15

GDrive: MAGEQ/Operations/MAGEQ Mission Tracking


Fellowship of the Wing

P3 @ 0 – 25 kft

Gas + aerosol

In situ

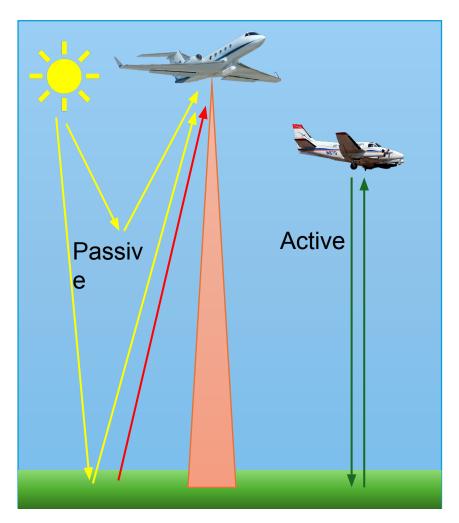
Overlap Periods

B200-AV @ 28 kft Atmos + ground remote sensing

TO @ 1 – 10 kft Gases + wind profiler In situ

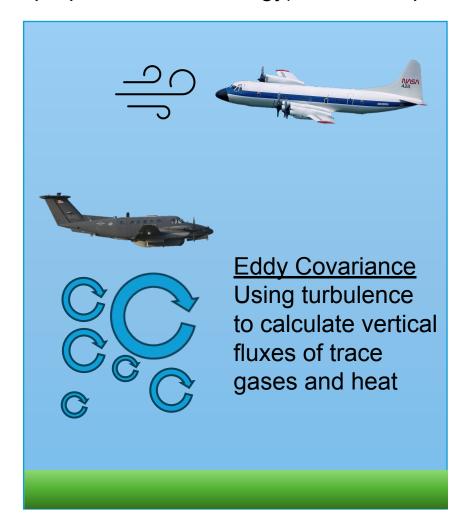
A90 @ 1 kft Vegetation remote sensing

GIII @ 42 kft


Atmosphere

remote sensing

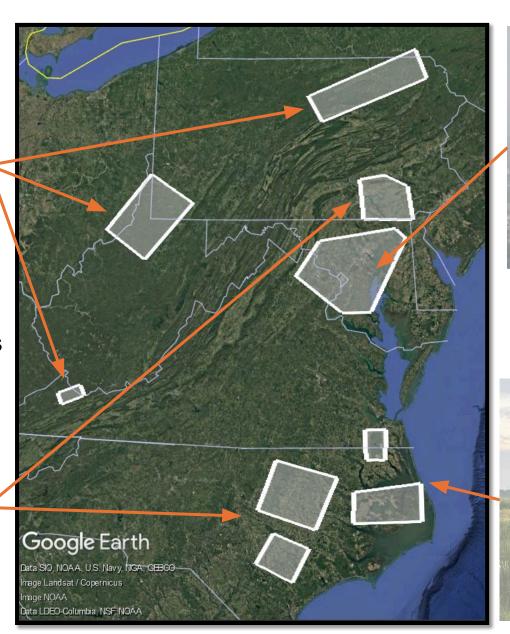
Measurement Techniques


Remote Sensing

Measuring scattered and reflect light (UV, visible, infrared) to infer surface and atmosphere properties

In Situ

Measuring atmospheric state (gas concentrations, aerosol properties, meteorology) where the plane is

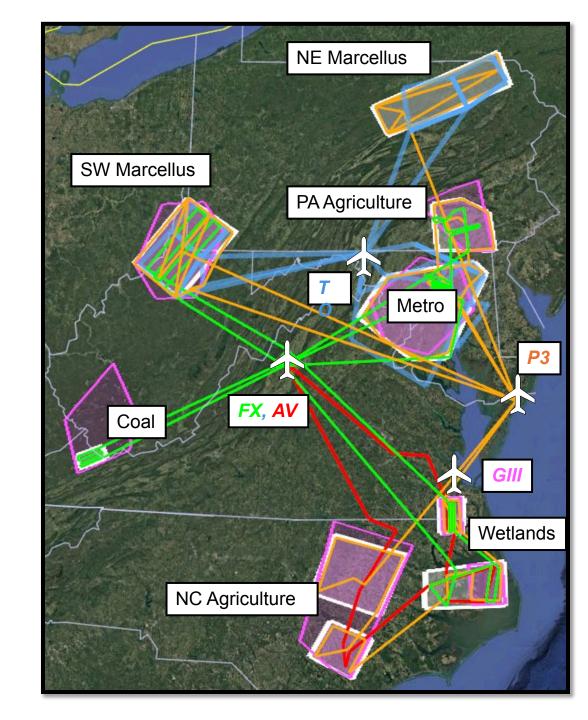


Mid-Atlantic Emission Sectors

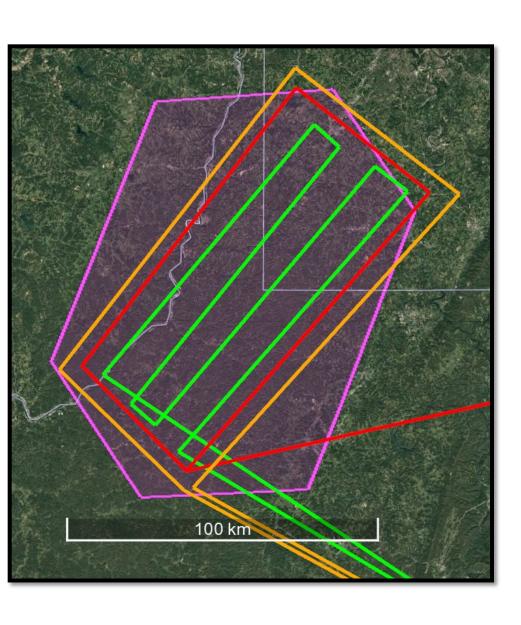
Petrochemical VOC, CH₄

*VOC = volatile organic compounds

Agriculture VOC, CH₄, N₂O, NH₃



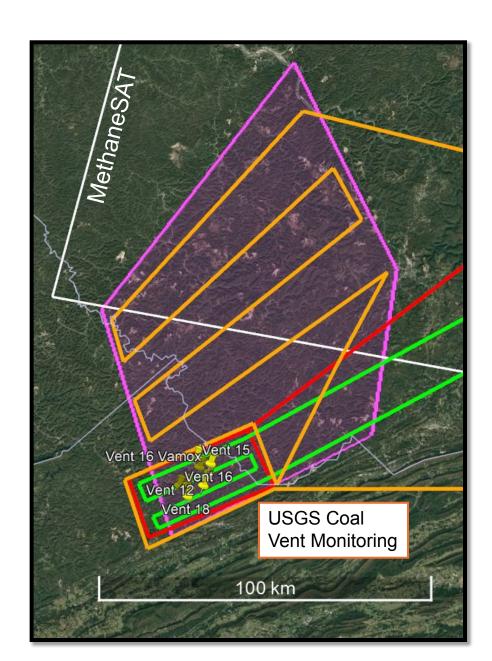
Urban NO_x, VOC, CH₄, CO₂


Wetlands
CH₄, CO₂,
N₂O

Coordinated Flight Plans

- Areas of interest for MethaneSat (Marcellus and Baltimore) have highest priority because they have the tightest constraints on weather and aircraft operations
- Flight plans align with ground-based observations (CoURAGE, Pandora, EM-27, TOLNET) where feasible
- Most aircraft at different locations
- Not all aircraft will sample all regions

MAGEQ Draft Plan – SW Marcellus

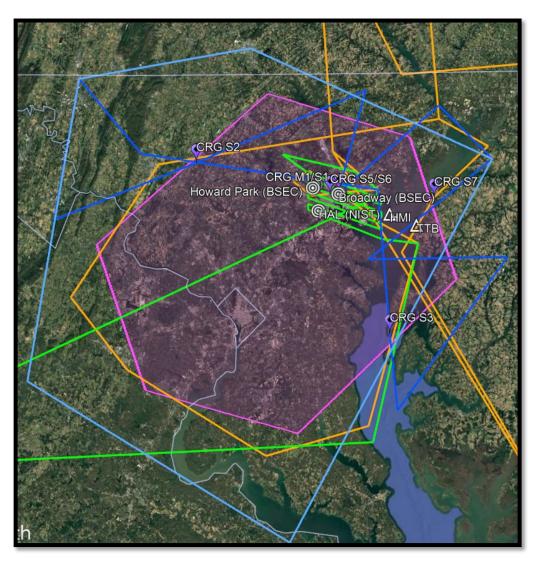

Weather: 2 days of clear sky, E/W winds

ideal

Satellites: MethaneSat **Airspace**: low challenge

Plane	Pattern	Duration
ТО	Circle at 1-6 kft AGL. Vertical profiles to 10 kft AMSL	3.5 h 2 flights/day
GIII	Raster whole region @ 40 kft	5 h 6 flights/ 2 days
FX	Raster @ 500' AGL, 20 km-long legs at 1000', 1500' AGL	4 h 1 flight/day
P3	Circle at 1-3 kft AGL Vertical profiling in the box to 25kft (Locations/frequency?)	4 h 1 flight/day (combine w/another module)
AV	Align with GIII, choose altitude to deconflict	Align with GIII

MAGEQ Draft Plan - WV/VA Coal



Weather: clear sky (fair weather Cu OK), N/S winds ideal

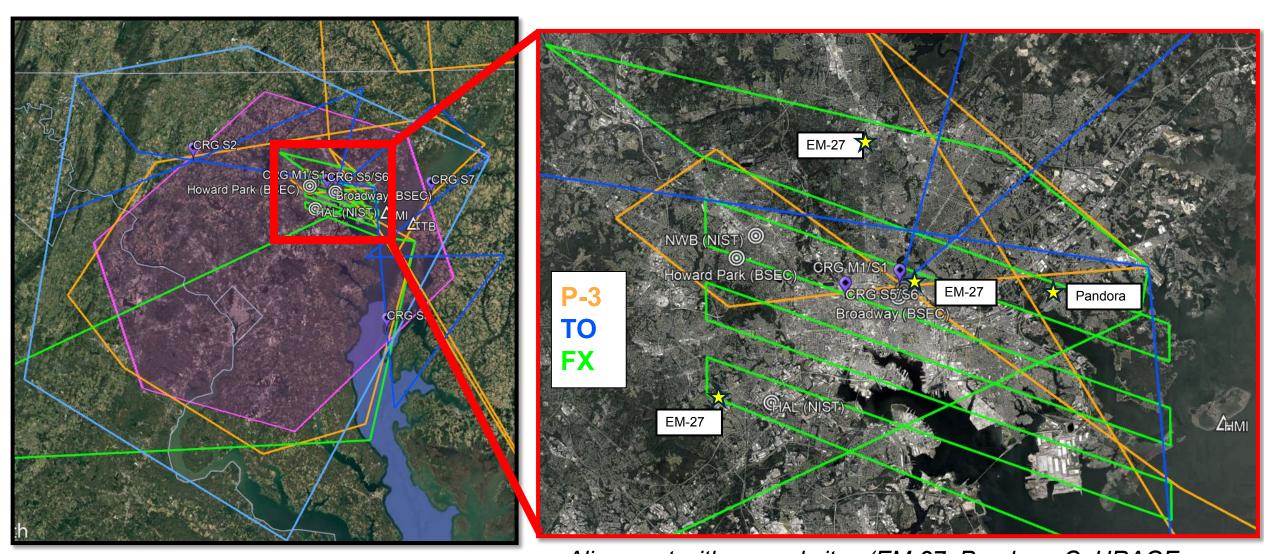
Satellites: None planned Airspace: low challenge

Plane	Pattern	Duration
ТО	Circle at 1-6 kft AGL. Vertical profiles to 10 kft AMSL	3 h 1 flight (long transit)
GIII	Raster whole region @ 40 kft	TBD 1 flight
FX	Raster @ 500' AGL	2 h 2 flights
P3	Circle at 1-3 kft AGL Wider area survey in boundary layer Profiling if GIII present	TBD
AV	Align with GIII More dense profiling over vents?	Align with GIII

MAGEQ Baltimore Metro Draft Plan

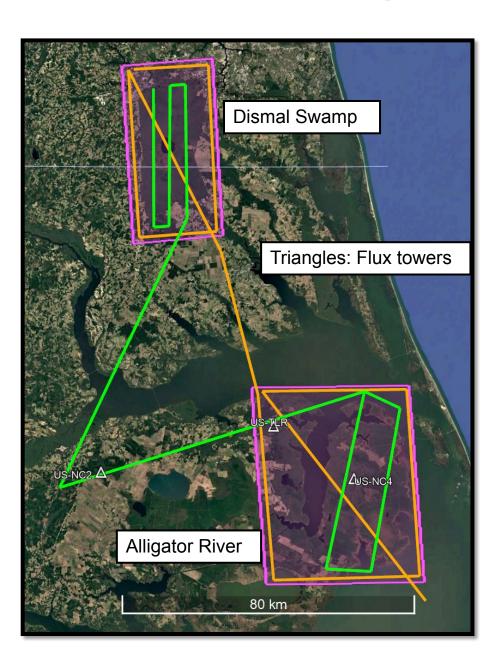
Weather: clear sky or slightly

cloudy


Satellites: MethaneSat, TEMPO

Airspace: Very challenging

Plane	Pattern	Duration
TO	Circle region (mass balance) Sample urban plume (air quality)	3.5 h 2 flights/day
GIII AV	Raster whole region	5 h
FX	Raster Baltimore Spirals @ Essex (Pandora)	2.5 h 2 flights / 1 day
Р3	Circle region + thru Baltimore low approaches at local airports Spiral @ Towson (EM-27)	8 h (repeat pattern 2x or 3x in one flight)


Alignment with ground sites (EM-27, Pandora, CoURAGE, NIST) and where possible

MAGEQ Metro Draft Plan

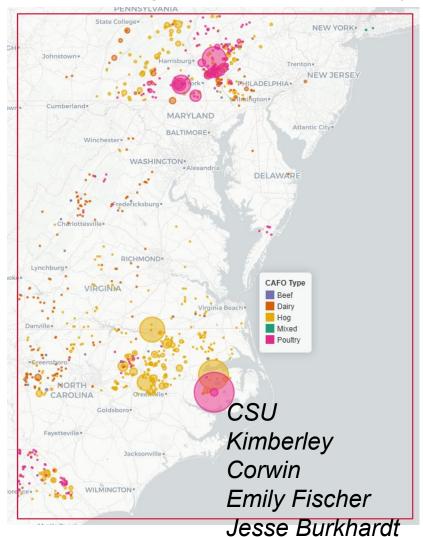
Alignment with ground sites (EM-27, Pandora, CoURAGE, NIST) and where possible

MAGEQ Draft Plan - Wetlands

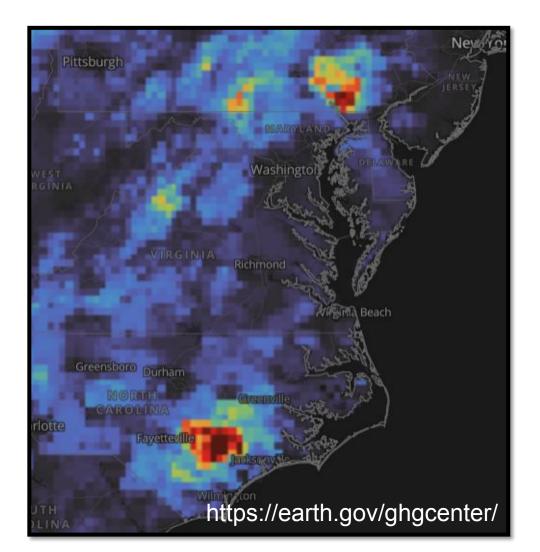
Weather: clear sky (fair weather Cu OK), E/W winds

ideal

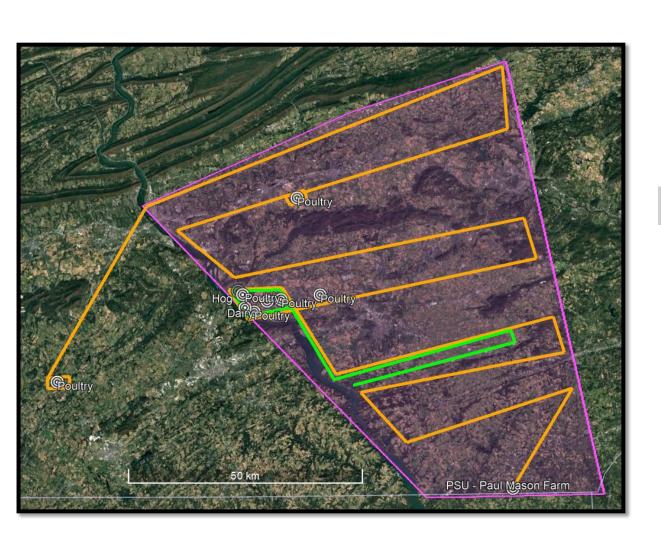
Satellites: None


Airspace: moderately challenging

Plane	Pattern	Duration
TO	n/a	n/a
GIII	Raster regions @ 40 kft	TBD 1 flight
FX	Raster @ 500' AGL	4 h 1 flight
P3	Circle at 1-3 kft AGL, 3 loops Vertical profiles to 25kft up/downwind Single line through the box @ 1kft	TBD 1 flight (combine with NC Ag)
AV	Align with GIII	Align with GIII


Also, A90 (G-LiHT) could sample these areas in early June

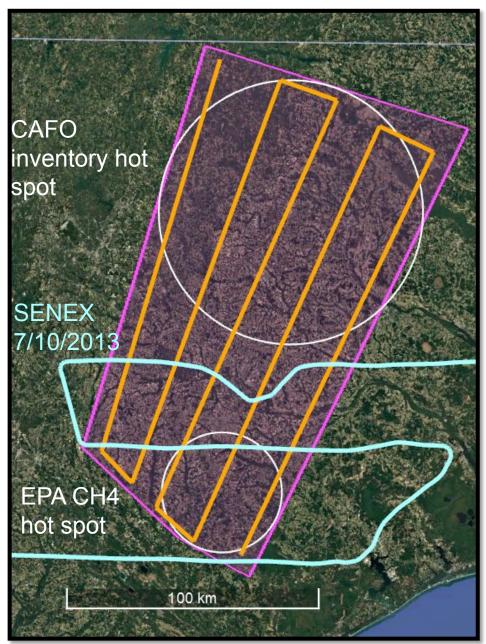
Agriculture – Animal Feeding Operations


AFO location based on permit data, sized by # of animal units (1 AU = 1 cow, 2.5 hogs, or 125 chickens)

EPA GHG Inventory Total Agricultural Methane Emissions (US GHG Center)

MAGEQ Draft Plan – PA Agriculture

Weather: no precipitation


Satellites: None

Airspace: moderately

challenging

Plane	Pattern	Duration
TO	n/a	n/a
GIII	Raster region @ 40 kft	TBD 1 flight
FX	Flux legs south of Lancaster, box budget west of Lancaster	n/a
P3	Area survey circle largest facilities vertical profile if G-III flying	TBD 1-2 flights (do w/ Marcellus)
AV	Align with GIII	Align with GIII

MAGEQ Draft Plan – NC Agriculture

Weather: no precipitation

Satellites: None

Airspace: moderately

challenging

Plane	Pattern	Duration
TO	n/a	n/a
GIII	Raster region @ 40 kft	TBD 1 flight
FX	n/a (too far)	n/a
P3	Area survey vertical profile if G-III flying	TBD 1-2 flights (do w/ wetlands)
AV	Align with GIII	Align with GIII

Data Archival and Availability

- Data from each aircraft stored in its own archive, but all archives will be linked through ESPO and/or US GHG website
 - B200-FX: SARP archive (https://www-air.larc.nasa.gov/missions/sarp/index.html)
 - P-3: SARP archive
 - G-III: https://www-air.larc.nasa.gov/missions/apmac/index.html
 - TO: AIRMAPS archive (https://csl.noaa.gov/projects/airmaps/)
 - B200-AV: ORNL DAAC (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2358)
 - A90: G-LiHT archive (https://glihtdata.gsfc.nasa.gov/)
- Per NASA guidelines, all NASA data will be publicly available once it is finalized, typically 6-12 months after mission end. Preliminary data will be available from PIs upon request
- All data will be standard formats (ICARTT, netCDF, or similar)

Addressing Stakeholder Needs

- Some engaged stakeholders require reliable information on pollutant emissions and transport for policy and impact assessments
- Researchers and partners are interested in developing carbon budgets for Mid-Atlantic wetlands in support of the work from NGOs engaged in the region
- Other partners have a vested interest in quantifying methane leaks from active and dormant/abandoned coal mines
- NASA's Student Airborne Research Program (SARP) will fly college interns on some of these aircraft and utilize observations for research projects
- NASA's TEMPO satellite (Tropospheric Emissions: Monitoring of Pollution) requires validation for trace gas columns and emissions estimates
- Some of the applications of the data collected include: air quality, greenhouse gases, ecology, and conservation

Stakeholder Plans for MAGEQ

- Stakeholder Mapping & Development of MAGEQ Stakeholder Email List
 - First Order Data Needs
 - Geographic Areas of Interest
 - Need Low-Latency Information
 - Other Feedback / Needs
- MAGEQ Stakeholder Weekly Email Updates
 - Starting on June 27 until mid-August
 - Notes from the (Air)Field
 - Science Focus
 - Plane Spotting (Image of the Week)
 - On the Horizon
 - Get in Touch
 - Feedback Form
- MAGEQ Post-Campaign Stakeholder Plans
 - Monthly meetings to learn about the uses and applications of stakeholders, as well as impact and value of the data collected

Questions?

For email updates: edil.sepulvedacarlo@nasa.gov

For plane tracking: https://airbornescience.nasa.gov/tracker/

US GHG Center Scientists

glenn.m.wolfe@nasa.gov lesley.e.ott@nasa.gov