Properties of a Mesoscale Convective System in the Context of an Isentropic Analysis

Mrowiec, A., O.M. Pauluis, A.M. Fridlind, and A.S. Ackerman (2015), Properties of a Mesoscale Convective System in the Context of an Isentropic Analysis, J. Atmos. Sci., 72, 1945-1962, doi:10.1175/JAS-D-14-0139.1.
Abstract

Application of an isentropic analysis of convective motions to a simulated mesoscale convective system is presented. The approach discriminates the vertical mass transport in terms of equivalent potential temperature. The scheme separates rising air at high entropy from subsiding air at low entropy. This also filters out oscillatory motions associated with gravity waves and isolates the overturning motions associated with convection and mesoscale circulation. The mesoscale convective system is additionally partitioned into stratiform and convective regions based on the radar reflectivity field. For each of the subregions, the mass transport derived in terms of height and an isentropic invariant of the flow is analyzed. The difference between the Eulerian mass flux and the isentropic counterpart is a significant and symmetric contribution of the buoyant oscillations to the upward and downward mass fluxes. Filtering out these oscillations results in substantial reduction of the diagnosed downward-to-upward convective mass flux ratio. The analysis is also applied to graupel and snow mixing ratios and number concentrations, illustrating the relationship of the particle formation process to the updrafts.

PDF of Publication
Download from publisher's website
Research Program
Radiation Science Program (RSP)

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.