Warning message

Member access has been temporarily disabled. Please try again later.
The POLARIS website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Observations of deep convective influence on stratospheric water vapor and its...

Hanisco, T. F., E. J. Moyer, E. Weinstock, J. M. St. Clair, D. Sayres, J. B. Smith, R. Lockwood, J. Anderson, A. Dessler, F. Keutsch, R. Spackman, B. Read, and T. P. Bui (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
Abstract: 

In situ observations of H2O and HDO in the midlatitude stratosphere are used to evaluate the role of convection in determining the stratospheric water budget. The observations show that water vapor in the overworld stratosphere (potential temperature > 380 K) is isotopically heavier than expected. Measurements in an airmass with anomalously high concentrations of water vapor show isotopic water signatures that are characteristic of evaporated ice lofted from the troposphere during convective storms. Observed H2O and HDO concentrations in the plume of enhanced water and in the background stratosphere suggest that extratropical convection can account for a significant fraction of the observed water vapor in the summertime overworld stratosphere above the mid-North American continent.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Upper Atmosphere Research Program (UARP)
Mission: 
AVE Houston 2