The ESPO website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Jessica B. Smith
Business Address:
School of Engineering and Applied Sciences
12 Oxford Street
Link Bldg.
Cambridge, MA 02138
United StatesFirst Author Publications:
- Smith, J. B. (2021), PERSPECTIVES ATMOSPHERIC SCIENCE Convective hydration of the stratosphere Cirrus plumes above superstorm anvils are visible manifestations of a hydraulic jump, Atmos. Chem. Phys..
- Smith, J. B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
- Smith, J. B. (2012), The Sources and Significance of Stratospheric Water Vapor: Mechanistic Studies from Equator to Pole, PhD Dissertation, Earth and Planetary Sciences, Harvard University.
Co-Authored Publications:
- Gordon, A., et al. (2024), Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes, Atmos. Chem. Phys., doi:10.5194/acp-24-7591-2024.
- Homeyer, C., et al. (2023), Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign, Geophys. Res. Lett..
- Pandey, A., et al. (2023), Sensitivity of Deep Convection and Cross-Tropopause Water Transport to Microphysical Parameterizations in WRF, J. Geophys. Res., 128, e2022JD037053, doi:10.1029/2022JD037053.
- Wilmouth, D., et al. (2023), RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Impact of the Hunga Tonga volcanic eruption on stratospheric composition, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2301994120.
- Jensen, E., et al. (2020), Assessment of Observational Evidence for Direct Convective Hydration of the Lower Stratosphere, J. Geophys. Res., 125, e2020JD032793, doi:10.1029/2020JD032793.
- Clapp, C., et al. (2019), Identifying source regions and the distribution of cross‐tropopause convective outflow over North America during the warm season, J. Geophys. Res., 124, 13750-, doi:10.1029/2019JD031382.
- Rollins, A., et al. (2014), Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission, J. Geophys. Res., 119, doi:10.1002/2013JD020817.
- Cziczo, D., et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324.
- Sayres, D., et al. (2010), Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere, J. Geophys. Res., 115, D00J20, doi:10.1029/2009JD013100.
- Tilmes, S., et al. (2010), An aircraft-based upper troposphere lower stratosphere O3, CO and H2O climatology for the Northern Hemisphere, J. Geophys. Res. (submitted).
- Weinstock, E., et al. (2009), Validation of the Harvard Lyman-a in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor, J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.
- Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
- Sayres, D., et al. (2008), Validation and determination of ice water contentradar reflectivity relationships during CRYSTALFACE: Flight requirements for future comparisons, J. Geophys. Res., 113, D05208, doi:10.1029/2007JD008847.
- Davis, S., et al. (2007), Comparisons of in situ measurements of cirrus cloud ice water content, J. Geophys. Res., 112, D10212, doi:10.1029/2006JD008214.
- Hanisco, T. F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
- Pittman, J. V., et al. (2007), Transport in the subtropical lowermost stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment, J. Geophys. Res., 112, D08304, doi:10.1029/2006JD007851.
- Popp, P., et al. (2007), Condensed-phase nitric acid in a tropical subvisible cirrus cloud, Geophys. Res. Lett., 34, L24812, doi:10.1029/2007GL031832.
- Weinstock, E., et al. (2007), Quantifying the impact of the North American monsoon and deep midlatitude convection on the subtropical lowermost stratosphere using in situ measurements, J. Geophys. Res., 112, D18310, doi:10.1029/2007JD008554.
- Gao, R., et al. (2006), Measurements of relative humidity in a persistent contrail, Atmos. Environ., 40, 1590-1600, doi:10.1016/j.atmosenv.2005.11.021.
- Lopez, J. P., et al. (2006), CO signatures in subtropical convective clouds and anvils during CRYSTAL-FACE: An analysis of convective transport and entrainment using observations and a cloud-resolving model, J. Geophys. Res., 111, D09305, doi:10.1029/2005JD006104.
- Popp, P., et al. (2006), The observation of nitric acid-containing particles in the tropical lower stratosphere, Atmos. Chem. Phys., 6, 601-611, doi:10.5194/acp-6-601-2006.
- Jensen, E., et al. (2005), Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE, J. Geophys. Res., 110, 2005, doi:10.1029/2004JD004671.
- Jensen, E., et al. (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration, Atmos. Chem. Phys., 5, 851-862, doi:10.5194/acp-5-851-2005.
- Popp, P., et al. (2004), Nitric acid uptake on subtropical cirrus cloud particles, J. Geophys. Res., 109, D06302, doi:10.1029/2003JD004255.
- Xueref, I., et al. (2004), Combining a receptor-oriented framework for tracer distributions with a cloud-resolving model to study transport in deep convective clouds: Application to the NASA CRYSTAL-FACE campaign, Geophys. Res. Lett., 31, L14106, doi:10.1029/2004GL019811.
- Hanisco, T. F., et al. (2002), Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH, J. Geophys. Res., 107, 8278, doi:10.1029/2000JD000425.
- Hanisco, T. F., et al. (2002), In situ observations of HO2 and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex, J. Geophys. Res., 107, 8283, doi:10.1029/2001JD001024.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.