Organization:
NASA Goddard Space Flight Center
Business Address:
NASA Goddard Space Flight Center
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021.
- Yu, H., et al. (2020), Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017, Atmos. Chem. Phys., 20, 139-161, doi:10.5194/acp-20-139-2020.
- Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
- Yu, H., et al. (2015), Quantification of Trans-Atlantic Dust Transport from Seven-year (2007-2013) Record of CALIPSO Lidar Measurements, " Remote Sens. Environ, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
- Yu, H., et al. (2015), Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements, Remote Sensing of Environment, 159, 232-249, doi:10.1016/j.rse.2014.12.010.
- Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040.
- Yu, H., and Z. Zhang (2013), New Directions: Emerging satellite observations of above-cloud aerosols and direct radiative forcingq, Atmos. Environ., 72, 36-40, doi:10.1016/j.atmosenv.2013.02.017.
- Yu, H., et al. (2013), Satellite perspective of aerosol intercontinental transport: from qualitative tracking to quantitative characterization, Atmos. Res., 124, 73-100, doi:10.1016/j.atmosres.2012.12.013.
- Yu, H., et al. (2013), A multi-model assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport, J. Geophys., Res, 118, 700-720, doi:10.1029/2012JD018148.
- Yu, H., et al. (2012), Aerosols from Overseas Rival Domestic Emissions over North America, Science, 337, 566-569, doi:10.1126/science.1217576.
- Yu, H., et al. (2012), An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements, Remote Sensing of Environment, 121, 125-131, doi:10.1016/j.rse.2012.01.011.
- Yu, H., et al. (2010), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, doi:10.1029/2009JD013364.
- Yu, H., et al. (2009), Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 114, D10206, doi:10.1029/2008JD010648.
- Yu, H., et al. (2008), A satellite-based assessment of transpacific transport of pollution aerosol, J. Geophys. Res., 113, D14S12, doi:10.1029/2007JD009349.
- Yu, H., et al. (2007), Interannual variability of smoke and warm cloud relationships in the Amazon as inferred from MODIS retrievals, Remote Sensing of Environment, 111, 435-449, doi:10.1016/j.rse.2007.04.003.
- Yu, H., et al. (2006), A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613-666, doi:10.5194/acp-6-613-2006.
- Yu, H., et al. (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi:10.1029/2003JD003914.
- Yu, H., et al. (2003), Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations, J. Geophys. Res., 108, 4128, doi:10.1029/2002JD002717.
- Yu, H., S.-C. Liu, and R. E. Dickinson (2002), Radiative effects of aerosols on the evolution of the atmospheric boundary layer, J. Geophys. Res., 107, 4142, doi:10.1029/2001JD000754.
Co-Authored Publications:
- Song, Q., et al. (2023), Size-resolved dust direct radiative effect efficiency derived from satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-22-13115-2022.
- Westberry, T. K., et al. (2023), Atmospheric nourishment of global ocean ecosystems, Science, 380, 515-519, doi:10.1126/science.abq5252.
- Feng, Y., et al. (2022), Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution, J. Adv. Modeling Earth Syst..
- Yang, A., et al. (2022), Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2, Frontiers in Environmental Science, 10, 975755, doi:10.3389/fenvs.2022.975755.
- Zheng, J., et al. (2022), The thermal infrared optical depth of mineral dust retrieved from integrated CALIOP and IIR observations, Remote Sensing of Environment, 270, 112841, doi:10.1016/j.rse.2021.112841.
- Bian, H., et al. (2021), The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model, Atmos. Chem. Phys., 21, 14177-14197, doi:10.5194/acp-21-14177-2021.
- Kim, D., et al. (2021), Spring Dust in Western North America and Its Interannual Variability—Understanding the Role of Local and Transported Dust, J. Geophys. Res., 126, org/10.1029/2021JD035383.
- Song, Q., et al. (2021), Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability, Atmos. Chem. Phys., 21, 13369-13395, doi:10.5194/acp-21-13369-2021.
- van der Does, M., et al. (2020), Tropical Rains Controlling Deposition of Saharan Dust Across the North Atlantic Ocean, Geophys. Res. Lett., 47, doi:10.1029/2019GL086867.
- Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
- Kim, D., et al. (2019), Asian and Trans‐Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis, J. Geophys. Res..
- Westberry, T. K., et al. (2019), Satellite‐Detected Ocean Ecosystem Response to Volcanic Eruptions in the Subarctic Northeast Pacific Ocean, Geophys. Res. Lett., 46, doi:10.1029/2019GL083977.
- Wu, M., et al. (2019), Modeling Dust in East Asia by CESM and Sources of Biases, J. Geophys. Res., 124, 8043-8064, doi:10.1029/2002JD002775).
- Smith, D. J., et al. (2018), Airborne Bacteria in Earth’s Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results From a New NASA Aircraft Bioaerosol Collector (ABC), Front. Microbiol., 9, 1752, doi:10.3389/fmicb.2018.01752.
- Song, Q., et al. (2018), Net radiative effects of dust in the tropical North Atlantic based on integrated satellite observations and in situ measurements, Atmos. Chem. Phys., 18, 11303-11322, doi:10.5194/acp-18-11303-2018.
- Buchard-Marchant, V. J., et al. (2017), The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851-6872, doi:10.1175/JCLI-D-16-0613.1.
- Kim, D., et al. (2017), Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel, Atmos. Environ., 148, 282-296, doi:10.1016/j.atmosenv.2016.10.051.
- Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
- Yang, Y., et al. (2017), Global source attribution of sulfate concentration and direct and indirect radiative forcing, Atmos. Chem. Phys., 17, 8903-8922, doi:10.5194/acp-17-8903-2017.
- Hu, Z., et al. (2016), Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations, Geosci. Model Dev., 9, 1725-1746, doi:10.5194/gmd-9-1725-2016.
- Tao, Z., H. Yu, and M. Chin (2016), Impact of transpacific aerosol on air quality over the United States: A perspective from aerosoleclouderadiation interactions, Atmos. Environ., 125, 48-60, doi:10.1016/j.atmosenv.2015.10.083.
- Huang, J., et al. (2015), CALIPSO inferred most probable heights of global dust and smoke layers, J. Geophys. Res., 120, doi:10.1002/2014JD022898.
- Tao, Z., H. Yu, and M. Chin (2015), The Role of Aerosol-Cloud-Radiation Interactions in Regional Air Quality—A NU-WRF Study over the United States, Atmosphere, 6, 1045-1068, doi:10.3390/atmos6081045.
- Anenberg, et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Qual. Atmo. Health, doi:10.1007/s11869-014-0248-9.
- Anenberg, S., et al. (2014), Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Quality, Atmosphere & Health, doi:10.1007/s11869-014-0248-9.
- Chin, M., et al. (2014), Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model, Atmos. Chem. Phys., 14, 3657-3690, doi:10.5194/acp-14-3657-2014.
- Kim, D., et al. (2014), Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data, J. Geophys. Res., 119, 6259-6277, doi:10.1002/2013JD021099.
- Kim, D., et al. (2014), Sources, sinks, and transatlantic transport of North Africandust aerosol: A multimodel analysis and comparison with remote sensing data, J. Geophys. Res., 119, 6259-6277, doi:10.1002/2013JD021099.
- Lee, S., et al. (2014), Effect of gradients in biomass burning aerosol onshallow cumulus convective circulations, J. Geophys. Res., 119, doi:10.1002/.
- Yang, Y., et al. (2014), First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica, Geophys. Res. Lett., 41, 730-735, doi:10.1002/2013GL058932.
- Zhang, Z., et al. (2014), A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777-1789, doi:10.5194/amt-7-1777-2014.
- Arola, A., et al. (2013), Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect, Atmos. Chem. Phys., 13, 7895-7901, doi:10.5194/acp-13-7895-2013.
- Collins, W. J., et al. (2013), Global and regional temperature change potentials for near-term climate forcers, Atmos. Chem. Phys., 13, 2471-2485, doi:10.5194/acp-13-2471-2013.
- Myhre, G., et al. (2013), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013.
- Randles, C., et al. (2013), Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys., 13, 2347-2379, doi:10.5194/acp-13-2347-2013.
- Stier, P., et al. (2013), Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study, Atmos. Chem. Phys., 13, 3245-3270, doi:10.5194/acp-13-3245-2013.
- Yuan, T., et al. (2012), Aerosol indirect effect on tropospheric ozone via lightning, J. Geophys. Res., 117, D18213, doi:10.1029/2012JD017723.
- Zhang, Y., et al. (2012), Aerosol daytime variations over North and South America derived from multiyear AERONET measurements, J. Geophys. Res., 117, D05211, doi:10.1029/2011JD017242.
- Zhu, L., J. V. Martins, and H. Yu (2012), Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing, Atmos. Meas. Tech., 5, 3055-3067, doi:10.5194/amt-5-3055-2012.
- Kim, D., et al. (2011), Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset, Atmos. Chem. Phys., 11, 10733-10741, doi:10.5194/acp-11-10733-2011.
- Yuan, T., L. Remer, and H. Yu (2011), Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train, Atmos. Chem. Phys., 11, 7119-7132, doi:10.5194/acp-11-7119-2011.
- Yuan, T., et al. (2011), Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.
- Bian, H., et al. (2010), Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution, J. Geophys. Res., 115, D07302, doi:10.1029/2009JD012781.
- Bian, H., et al. (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
- Zhang, Y., et al. (2009), Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, doi:10.1029/2009GL037180.
- Remer, L., et al. (2008), Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.
- Rudich, Y., et al. (2008), Estimation of transboundary transport of pollution aerosols by remote sensing in the eastern Mediterranean, J. Geophys. Res., 113, D14S13, doi:10.1029/2007JD009601.
- Zhang, Y., et al. (2008), A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon, J. Geophys. Res., 113, D14S15, doi:10.1029/2007JD009449.
- Zhao, T., et al. (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spectrosc. Radiat. Transfer, 109, 1162-1186.
- Anderson, T. L., et al. (2005), An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols, Bull. Am. Meteorol. Soc., 1795, doi:10.1175/BAMS-86-12-1795.
- Zhou, M., et al. (2005), A normalized description of the direct effect of key aerosol types on solar radiation as estimated from Aerosol Robotic Network aerosols and Moderate Resolution Imaging Spectroradiometer albedos, J. Geophys. Res., 110, D19202, doi:10.1029/2005JD005909.
- Matsui, T., et al. (2004), Regional comparison and assimilation of GOCART and MODIS aerosol optical depth across the eastern U.S., Geophys. Res. Lett., 31, L21101, doi:10.1029/2004GL021017.
- Tian, Y., et al. (2004), Comparison of seasonal and spatial variations of LAI/FPAR from MODIS and Common Land Model, J. Geophys. Res., 109, D01103.
- Zhou, L., et al. (2003), A sensitivity study of climate and energy balance simulations with use of satellite derived emissivity data over the northern Africa and the Arabian peninsula, J. Geophys. Res., 108, 4795.
- Zhou, L., et al. (2003), Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model, J. Geophys. Res., 108, 4488.
- Wang, Y., et al. (2000), Influence of convection and biomass burning on tropospheric chemistry over the tropical Pacific, J. Geophys. Res., 105, 9321-9333.
- Chameides, W. L., et al. (1999), Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls?, Proc. Natl. Acad. Sci., 96, 13626-13633, doi:10.1073/pnas.96.24.13626.
- Liu, S. C., et al. (1999), Sources of reactive nitrogen in the upper troposphere during SONEX, Geophys. Res. Lett., 26, 2441-2444.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.