Organization
Harvard University
Email
Business Phone
Work
(617) 495-1794
Mobile
(781) 307-2437
Business Address
School of Engineering and Applied Sciences
Pierce Hall, 29 Oxford St.
Cambridge, MA 02138
United States
First Author Publications
-
Jacob, D.J., et al. (2023), Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., doi:10.5194/acp-22-9617-2022.
-
Jacob, D.J. (2020), SCIENCE ADVANCES | RESEARCH ARTICLE, Science.
-
Jacob, D.J., et al. (2010), The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191-5212, doi:10.5194/acp-10-5191-2010.
-
Jacob, D.J., et al. (1996), Origin of Ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the south Atlantic basin, J. Geophys. Res., 101.D19, 24,235-24.
-
Jacob, D.J., et al. (1992), Summertime Photochemistry in the Arctic Troposphere, J. Geophys. Res., 97, 16421-16432.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Brewer, J.F., et al. (2023), A Scheme for Representing Aromatic Secondary Organic Aerosols in Chemical Transport Models: Application to Source Attribution of Organic Aerosols Over South Korea During the KORUS-AQ Campaign, J. Geophys. Res., e2022JD037257, doi:10.1029/2022JD037257.
-
Chen, Z., et al. (2023), Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-22-10809-2022.
-
Chen, Z., et al. (2023), Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action, Atmos. Chem. Phys., doi:10.5194/acp-23-5945-2023.
-
Colombi, N.K., et al. (2023), Why is ozone in South Korea and the Seoul metropolitan area so high and increasing?, Atmos. Chem. Phys., doi:10.5194/acp-23-4031-2023.
-
Dang, R., et al. (2023), Background nitrogen dioxide (NO2 ) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires, Atmos. Chem. Phys., doi:10.5194/acp-23-6271-2023.
-
Lu, X., et al. (2023), RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and gas fields tied to activity metrics, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2217900120.
-
Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
-
Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
-
Shen, L., et al. (2023), Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins, Atmos. Chem. Phys., doi:10.5194/acp-22-11203-2022.
-
Varon, D.J., et al. (2023), Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations, Geosci. Model. Dev., doi:10.5194/gmd-15-5787-2022.
-
Varon, D.J., et al. (2023), Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-23-7503-2023.
-
Version, P., et al. (2023), An Adaptive Auto-Reduction Solver for Speeding Up Integration of Chemical Kinetics in Atmospheric Chemistry Models: Implementation and Evaluation in the Kinetic, J. Adv. Modeling Earth Syst., 15, e2022MS003293, doi:10.1029/2022MS003293.
-
Yang, L.H., et al. (2023), Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space, Atmos. Chem. Phys., doi:10.5194/acp-23-2465-2023.
-
Delwiche, K.B., et al. (2022), Estimating Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Mechanistic Model, J. Geophys. Res., 127, e2022JG006908, doi:10.1029/2022JG006908.
-
Lu, X., et al. (2022), Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010-2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric observations, Atmos. Chem. Phys., 22, 395-418, doi:10.5194/acp-22-395-2022.
-
Moch, J.M., et al. (2022), Aerosol-Radiation Interactions in China in Winter: Competing Effects of Reduced Shortwave Radiation and Cloud-SnowfallAlbedo Feedbacks Under Rapidly Changing Emissions, J. Geophys. Res..
-
Pendergrass, D.C., et al. (2022), Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6 × 6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data, Atmos. Meas. Tech., 15, 1075-1091, doi:10.5194/amt-15-1075-2022.
-
Qu, Z., et al. (2022), Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations, Environ. Res. Lett., 17, 094003, doi:10.1088/1748-9326/ac8754.
-
Scarpelli, T.R., et al. (2022), A gridded inventory of Canada’s anthropogenic methane, Environ. Res. Lett., 17, 014007, doi:10.1088/1748-9326/ac40b1.
-
Scarpelli, T.R., et al. (2022), Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations, Atmos. Chem. Phys., 22, 3235-3249, doi:10.5194/acp-22-3235-2022.
-
Shen, L., et al. (2022), A machine-learning-guided adaptive algorithm to reduce the computational cost of integrating kinetics in global atmospheric chemistry models: application to GEOS-Chem versions 12.0.0 and 12.9.1, Geosci. Model. Dev., 15, 1677-1687, doi:10.5194/gmd-15-1677-2022.
-
Bates, K.H., et al. (2021), The Global Budget of Atmospheric Methanol: New Constraints on Secondary, Oceanic, and Terrestrial Sources, J. Geophys. Res., 126, doi:10.1029/2020JD033439.
-
Keller, C.A., et al. (2021), Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0, J. Adv. Modeling Earth Syst..
-
Kulawik, S.S., et al. (2021), Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements, Atmos. Meas. Tech., 14, 335-354, doi:10.5194/amt-14-335-2021.
-
Lin, H., et al. (2021), Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models, Geosci. Model. Dev., 14, 5487-5506, doi:10.5194/gmd-14-5487-2021.
-
Lu, X., et al. (2021), Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations, Atmos. Chem. Phys., 21, 4637-4657, doi:10.5194/acp-21-4637-2021.
-
Maasakkers, ., et al. (2021), 2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane, Atmos. Chem. Phys., 21, 4339-4356, doi:10.5194/acp-21-4339-2021.
-
Qu, Z., et al. (2021), Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments, Atmos. Chem. Phys., 21, 14159-14175, doi:10.5194/acp-21-14159-2021.
-
Satellite, N.O., et al. (2021), US COVID-19 Shutdown Demonstrates Importance of Background NO2 in Inferring NOx Emissions From, Geophys. Res. Lett..
-
Shen, L., et al. (2021), Unravelling a large methane emission discrepancy in Mexico using satellite observations, Remote Sensing of Environment, 260, 112461, doi:10.1016/j.rse.2021.112461.
-
Varon, D.J., et al. (2021), High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations, Atmos. Meas. Tech., 14, 2771-2785, doi:10.5194/amt-14-2771-2021.
-
Wang, X., et al. (2021), Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants, Atmos. Chem. Phys., 21, 13973-13996, doi:10.5194/acp-21-13973-2021.
-
Zhai, S., et al. (2021), Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations, Atmos. Chem. Phys., 21, 16775-16791, doi:10.5194/acp-21-16775-2021.
-
Zhang, Y., et al. (2021), Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations, Atmos. Chem. Phys., 21, 3643-3666, doi:10.5194/acp-21-3643-2021.
-
Bates, K.H., and D.J. Jacob (2020), An Expanded Definition of the Odd Oxygen Family for Tropospheric Ozone Budgets: Implications for Ozone Lifetime and Stratospheric Influence, Geophys. Res. Lett., 47, doi:10.1029/2019GL084486.
-
Scarpelli, T.R., et al. (2020), A global gridded (0.1 ⇥ 0.1 ) inventory of methane emissions from oil, gas, and coal exploitation based on national reports to the United Nations Framework Convention on Climate Change, Earth Syst. Sci. Data, 12, 563-575, doi:10.5194/essd-12-563-2020.
-
Shah, V., et al. (2020), Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China, Atmos. Chem. Phys., 20, 1483-1495, doi:10.5194/acp-20-1483-2020.
-
Shen, L., et al. (2020), An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0, Geosci. Model. Dev., 13, 2475-2486, doi:10.5194/gmd-13-2475-2020.
-
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
-
Zhuang, J., et al. (2020), Enabling High‐Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOS‐Chem Atmospheric Chemistry Model, J. Adv. Modeling Earth Syst., 12, doi:10.1029/2020MS002064.
-
Bates, K.H., and D.J. Jacob (2019), A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol, Atmos. Chem. Phys., 19, 9613-9640, doi:10.5194/acp-19-9613-2019.
-
Cusworth, D., et al. (2019), Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space, Atmos. Meas. Tech., 12, 5655-5668, doi:10.5194/amt-12-5655-2019.
-
Maasakkers, ., et al. (2019), Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015, Atmos. Chem. Phys., 19, 7859-7881, doi:10.5194/acp-19-7859-2019.
-
Shen, L., et al. (2019), An evaluation of the ability of the Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005–2017 ozone trends, Atmos. Chem. Phys., 19, 6551-6560, doi:10.5194/acp-19-6551-2019.
-
Shen, L., et al. (2019), The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions, Geophys. Res. Lett., 46, 4468-4475.
-
Silvern, R.F., et al. (2019), Using satellite observations of tropospheric NO2 columns to infer long-term trends in US NOx emissions: the importance of accounting for the free tropospheric NO2 background, Atmos. Chem. Phys., 19, 8863-8878, doi:10.5194/acp-19-8863-2019.
-
Travis, K., and D.J. Jacob (2019), Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02, Geosci. Model. Dev., 12, 3641-3648, doi:10.5194/gmd-12-3641-2019.
-
Varon, D.J., et al. (2019), Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production, Geophys. Res. Lett., 46, 13507-13516.
-
Zhang, Y., et al. (2019), Satellite‐Observed Changes in Mexico's Offshore Gas Flaring Activity Linked to Oil/Gas Regulations, Geophys. Res. Lett., 46, 1879-1888, doi:10.1029/2018GL081145.
-
Zhu, L., et al. (2019), Effect of sea salt aerosol on tropospheric bromine chemistry, Atmos. Chem. Phys., 19, 6497-6507, doi:10.5194/acp-19-6497-2019.
-
Zhuang, J., et al. (2019), Enabling Immediate Access To Earth Science Models Through Cloud Computing: Application to the GEOS-Chem Model, Bull. Am. Meteorol. Soc., 1943-1960, doi:10.1175/BAMS-D-18-0243.1.
-
Cusworth, D.H., et al. (2018), Detecting high-emitting methane sources in oil/gas fields using satellite observations, Atmos. Chem. Phys., 18, 16885-16896, doi:10.5194/acp-18-16885-2018.
-
Eastham, S.D., et al. (2018), GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications, Geosci. Model. Dev., 11, 2941-2953, doi:10.5194/gmd-11-2941-2018.
-
Hu, L., et al. (2018), Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM), Geosci. Model. Dev., 11, 4603-4620, doi:10.5194/gmd-11-4603-2018.
-
Kaiser, J., et al. (2018), High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US, Atmos. Chem. Phys., 18, 5483-5497, doi:10.5194/acp-18-5483-2018.
-
Marais, E.A., et al. (2018), Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO2 observations from the OMI satellite instrument, Atmos. Chem. Phys., 18, 17017-17027, doi:10.5194/acp-18-17017-2018.
-
Silvern, R.F., et al. (2018), Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir, Geophys. Res. Lett..
-
Turner, A.J., et al. (2018), Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales, Atmos. Chem. Phys., 18, 8265-8278, doi:10.5194/acp-18-8265-2018.
-
Varon, D.J., et al. (2018), Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes, Atmos. Meas. Tech., 11, 5673-5686, doi:10.5194/amt-11-5673-2018.
-
Yu, K., et al. (2018), Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology, Geosci. Model. Dev., 11, 305-319, doi:10.5194/gmd-11-305-2018.
-
Zhang, Y., et al. (2018), Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane, Atmos. Chem. Phys., 18, 15959-15973, doi:10.5194/acp-18-15959-2018.
-
Zhuang, J., et al. (2018), The importance of vertical resolution in the free troposphere for modeling intercontinental plumes, Atmos. Chem. Phys., 18, 6039-6055, doi:10.5194/acp-18-6039-2018.
-
Breider, T.J., et al. (2017), Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980, J. Geophys. Res., 122, 3573-3594, doi:10.1002/2016JD025321.
-
Silvern, R.F., et al. (2017), Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol, Atmos. Chem. Phys., 17, 5107-5118, doi:10.5194/acp-17-5107-2017.
-
Zhu, L., et al. (2017), Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States, Environ. Sci. Technol., 51, 5650-5657, doi:10.1021/acs.est.7b01356.
-
Toon, O.B., et al. (2016), Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission, J. Geophys. Res., 121, 4967-5009, doi:10.1002/2015JD024297.
-
Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
-
Kim, P., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, doi:10.5194/acp-15-10411-2015.
-
Kim, P., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, doi:10.5194/acp-15-10411-2015.
-
Wolfe, G.M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
-
Fischer, E.V., et al. (2014), Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution, Atmos. Chem. Phys., 14, 2679, doi:10.5194/acp-14-2679-2014.
-
Law, K., et al. (2014), Arctic Air Pollution: New Insights from POLARCAT-IPY, Bull. Am. Meteorol. Soc.(submitted).
-
Mao, J., et al. (2013), Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509-519, doi:10.5194/acp-13-509-2013.
-
Mao, J., et al. (2013), Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, J. Geophys. Res., 118, 11256-11268, doi:10.1002/jgrd.50817.
-
Paulot, F., et al. (2013), Sources and Processes Contributing to Nitrogen Deposition: An Adjoint Model Analysis Applied to Biodiversity Hotspots Worldwide, Environ. Sci. Technol., doi:10.1021/es3027727.
-
Streets, D.G., et al. (2013), Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011-1042, doi:10.1016/j.atmosenv.2013.05.051.
-
Fischer, E.V., et al. (2012), The role of the ocean in the global atmospheric budget of acetone, Geophys. Res. Lett., 39, L01807, doi:10.1029/2011GL050086.
-
Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
-
Marais, E.A., et al. (2012), Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns, Atmos. Chem. Phys., 12, 6219-6235, doi:10.5194/acp-12-6219-2012.
-
Murray, L.T., et al. (2012), Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi:10.1029/2012JD017934.
-
Tai, A.P.K., et al. (2012), Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change, Atmos. Chem. Phys., 12, 3131-3145, doi:10.5194/acp-12-3131-2012.
-
Tai, A.P.K., et al. (2012), Impact of 2000–2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes, Atmos. Chem. Phys., 12, 11329-11337, doi:10.5194/acp-12-11329-2012.
-
Wecht, ., et al. (2012), Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832, doi:10.5194/acp-12-1823-2012.
-
Wu, S., et al. (2012), Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century, Atmos. Chem. Phys., 12, 1597-1609, doi:10.5194/acp-12-1597-2012.
-
Fisher, J.A., et al. (2011), Sources, distribution, and acidity of sulfateeammonium aerosol in the Arctic in winterespring, Atmos. Environ., 45, 7301-7318, doi:10.1016/j.atmosenv.2011.08.030.
-
Wang, Q., et al. (2011), Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453-12473, doi:10.5194/acp-11-12453-2011.
-
Wofsy, S., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
-
Zoogman, P., et al. (2011), Ozone air quality measurement requirements for a geostationary satellite mission, Atmos. Environ., 45, 7143-7150, doi:10.1016/j.atmosenv.2011.05.058.
-
Drury, E., et al. (2010), Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA‐AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources, J. Geophys. Res., 115, D14204, doi:10.1029/2009JD012629.
-
Fairlie, T.D., et al. (2010), Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999-4012, doi:10.5194/acp-10-3999-2010.
-
Fisher, J.A., et al. (2010), Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide, Atmos. Chem. Phys., 10, 977-996, doi:10.5194/acp-10-977-2010.
-
Kopacz, ., et al. (2010), Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876, doi:10.5194/acp-10-855-2010.
-
Mao, J., et al. (2010), Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010.
-
Rastigejev, Y., et al. (2010), Resolving intercontinental pollution plumes in global models of atmospheric transport, J. Geophys. Res., 115, D02302, doi:10.1029/2009JD012568.
-
Singh, H.B., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
-
Zhang, L., et al. (2010), Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725-4739, doi:10.5194/acp-10-4725-2010.
-
Boersma, K.F., et al. (2009), Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities, Atmos. Chem. Phys., 9, 3867-3879, doi:10.5194/acp-9-3867-2009.
-
Fiore, A., et al. (2009), Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, doi:10.1029/2008JD010816.
-
Fu, T., et al. (2009), Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America, Atmos. Environ., 43, 1814-1822, doi:10.1016/j.atmosenv.2008.12.029.
-
Hudman, ., et al. (2009), North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations, J. Geophys. Res., 114, D07302, doi:10.1029/2008JD010126.
-
Kopacz, ., et al. (2009), Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305, doi:10.1029/2007JD009264.
-
Singh, H.B., et al. (2009), Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B Campaign overview and first results, Atmos. Chem. Phys., 9, 2301-2318.
-
Wang, H., et al. (2009), Error correlation between CO2 and CO as constraint for CO2 flux inversions using satellite data, Atmos. Chem. Phys., 9, 7313-7323, doi:10.5194/acp-9-7313-2009.
-
Wu, S., et al. (2009), Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions, Geophys. Res. Lett., 36, L05806, doi:10.1029/2008GL036607.
-
Zhang, L., et al. (2009), Intercontinental source attribution of ozone pollution at western U.S. sites using an adjoint method, Geophys. Res. Lett., 36, L11810, doi:10.1029/2009GL037950.
-
Boersma, K.F., et al. (2008), Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space, J. Geophys. Res., 113, D16S26, doi:10.1029/2007JD008816.
-
Boersma, K.F., et al. (2008), Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480-4497, doi:10.1016/j.atmosenv.2008.02.004.
-
Drury, E., et al. (2008), Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America, J. Geophys. Res., 113, D16204, doi:10.1029/2007JD009573.
-
Hudman, ., et al. (2008), Biogenic versus anthropogenic sources of CO in the United States, Geophys. Res. Lett., 35, L04801, doi:10.1029/2007GL032393.
-
Millet, D., et al. (2008), New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys. Discuss., 8, 7609-7655.
-
Millet, D., et al. (2008), New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys., 8, 6887-6905, doi:10.5194/acp-8-6887-2008.
-
Millet, D., et al. (2008), Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor, J. Geophys. Res., 113, D02307, doi:10.1029/2007JD008950.
-
Sanderson, M.G., et al. (2008), A multi-model study of the hemispheric transport and deposition of oxidised nitrogen, Geophys. Res. Lett., 35, L17815, doi:10.1029/2008GL035389.
-
Wang, J., et al. (2008), Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions, J. Geophys. Res., 113, D11206, doi:10.1029/2007JD009367.
-
Wang, J., et al. (2008), Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions, J. Geophys. Res., 113, D11207, doi:10.1029/2007JD009368.
-
Xiao, Y., et al. (2008), Global budget of ethane and regional constraints on U.S. sources, J. Geophys. Res., 113, D21306, doi:10.1029/2007JD009415.
-
Zhang, L., et al. (2008), Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117-6136, doi:10.5194/acp-8-6117-2008.
-
Fairlie, T.D., et al. (2007), The impact of transpacific transport of mineral dust in the United States, Atmos. Environ., 41, 1251-1266, doi:10.1016/j.atmosenv.2006.09.048.
-
Fu, T., et al. (2007), Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone, J. Geophys. Res., 112, D06312, doi:10.1029/2006JD007853.
-
Hudman, ., et al. (2007), Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912.
-
Liang, Q., et al. (2007), Summertime influence of Asian pollution in the free troposphere over North America, J. Geophys. Res., 112, D12S11, doi:10.1029/2006JD007919.
-
Miller, C.E., et al. (2007), Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.
-
Turquety, ., et al. (2007), Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection, J. Geophys. Res., 112, D12S03, doi:10.1029/2006JD007281.
-
Heald, C.L., et al. (2006), Concentrations and sources of organic carbon aerosols in the free troposphere over North America, J. Geophys. Res., 111, D23S47, doi:10.1029/2006JD007705.
-
Heald, C.L., et al. (2006), Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States, J. Geophys. Res., 111, D14310, doi:10.1029/2005JD006847.
-
Liu, X., et al. (2006), First directly retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., 111, D02308, doi:10.1029/2005JD006564.
-
Millet, D., et al. (2006), Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission, J. Geophys. Res., 111, D24S02, doi:10.1029/2005JD006853.
-
Palmer, P.I., et al. (2006), Using CO2:CO correlations to improve inverse analyses of carbon fluxes, J. Geophys. Res., 111, D12318, doi:10.1029/2005JD006697.
-
Palmer, P.I., et al. (2006), Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, J. Geophys. Res., 111, D12315, doi:10.1029/2005JD006689.
-
Singh, H.B., et al. (2006), Overview of the summer 2004 Intercontinental Chemical Transport Experiment -North America (INTEX-A), J. Geophys. Res., 111, D24S01, doi:10.1029/2006JD007905.
-
Zhang, L., et al. (2006), Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions, Geophys. Res. Lett., 33, L18804, doi:10.1029/2006GL026399.
-
Heald, C.L., et al. (2005), A large organic aerosol source in the free troposphere missing from current models, Geophys. Res. Lett., 32, L18809, doi:10.1029/2005GL023831.
-
Li, Q., et al. (2005), North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone, J. Geophys. Res., 110, D10301, doi:10.1029/2004JD005039.
-
Park, R.J., et al. (2005), Export efficiency of black carbon aerosol in continental outflow: Global implications, J. Geophys. Res., 110, D11205, doi:10.1029/2004JD005432.
-
Suntharalingam, P., et al. (2005), Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses, Global Biogeochem. Cycles, 19, GB4003, doi:10.1029/2005GB002466.
-
Crisp, D., et al. (2004), The Orbiting Carbon Observatory (OCO) mission, Advances in Space Research, 34, 700-709, doi:10.1016/j.asr.2003.08.062.
-
Heald, C.L., et al. (2004), Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide, J. Geophys. Res., 109, D23306, doi:10.1029/2004JD005185.
-
Jaeglé, L., et al. (2004), Satellite mapping of rain-induced nitric oxide emissions from soils, J. Geophys. Res., 109, D21310, doi:10.1029/2004JD004787.
-
Liu, H., et al. (2004), Constraints on the sources of tropospheric ozone from 210Pb-7Be-O3 correlations, J. Geophys. Res., 109, D07306, doi:10.1029/2003JD003988.
-
Mickley, L.J., et al. (2004), Climate response to the increase in tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO2 forcings, J. Geophys. Res., 109, D05106, doi:10.1029/2003JD003653.
-
Park, R.J., et al. (2004), Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473.
-
Singh, H.B., et al. (2004), Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals (OVOC) based on measurements over the Pacific during TRACE-P, J. Geophys. Res., 109, doi:10.1029/2003JD003883.
-
Suntharalingam, P., et al. (2004), Improved quantification of Chinese carbon fluxes using CO2/ CO correlations in Asian outflow, J. Geophys. Res., 109, D18S18, doi:10.1029/2003JD004362.
-
Xiao, Y., et al. (2004), Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow, J. Geophys. Res., 109, D15S16, doi:10.1029/2003JD004475.
-
Browell, E., et al. (2003), Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring, J. Geophys. Res., 108, 8805.
-
Cantrell, C., et al. (2003), Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign as measured aboard the NASA P-3B aircraft, J. Geophys. Res., 108, 8797, doi:10.1029/2003JD003674.
-
Heald, C.L., et al. (2003), Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective, J. Geophys. Res., 108, 4804, doi:10.1029/2003JD003507.
-
Heald, C.L., et al. (2003), Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow, J. Geophys. Res., 108, 8811, doi:10.1029/2002JD003082.
-
Li, Q., et al. (2003), A global three-dimensional model analysis of the atmospheric budgets of HCN and CH3CN: Constraints from aircraft and ground measurements, J. Geophys. Res., 108, 8827, doi:10.1029/2002JD003075.
-
Liu, H., et al. (2003), Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res., 108, 8786, doi:10.1029/2002JD003102.
-
Mari, C., et al. (2003), On the relative role of convection, chemistry, and transport over the south Pacific convergence zone during PEM-Tropics B: a case study, J. Geophys. Res., 108, 8232, doi:10.1029/2001JD001466.
-
Martin, R., et al. (2003), Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols, J. Geophys. Res., 108, 4097, doi:10.1029/2002JD002622.
-
Park, R.J., et al. (2003), Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190.
-
Singh, H.B., et al. (2003), In-situ measurements of HCN and CH3CN in the Pacific troposphere: Souces, sinks, and comparisons with spectroscopic observation, J. Geophys. Res., 108, 8795, doi:10.1029/2002JD003006.
-
Singh, H.B., et al. (2003), Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air-sea exchange models, Geophys. Res. Lett., 30, 1862, doi:10.1029/2003GL017933.
-
Staudt, A.C., et al. (2003), Sources and chemistry of nitrogen oxides over the tropical Pacific, J. Geophys. Res., 108, 8239, doi:10.1029/2002JD002139.
-
Liu, H., et al. (2002), Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations, J. Geophys. Res., 107, 4573, doi:10.1029/2001JD002005.
-
Liu, H., et al. (2001), Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12109-12128, doi:10.1029/2000JD900839.
-
Singh, H.B., et al. (2001), Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds, Nature, 410, 1078-1081.
-
Faloona, I., et al. (2000), Observations of HOX and its relationship with NOX in the upper troposphere during SONEX, J. Geophys. Res., 105, 3771-3783.
-
Jaeglé, L., et al. (2000), Photochemistry of HOx in the upper troposphere at northern midlatitudes, J. Geophys. Res., 105, 3877-3892.
-
Schultz, M., et al. (2000), Chemical NOx budget in the upper troposphere over the tropical South Pacific, J. Geophys. Res., 105, 6669-6679.
-
Singh, H.B., et al. (2000), Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res., 105, 3795-3805.
-
Singh, H.B., and D.J. Jacob (2000), Future directions: Satellite observations of tropospheric Chemistry, Atmos. Environ., 34, 4399-4401.
-
Brune, W.H., et al. (1999), OH and HO2 chemistry in the north Atlantic free troposphere, Geophys. Res. Lett., 26, 3077-3080.
-
Jaeglé, L., et al. (1999), Ozone production in the upper troposphere and the influence of aircraft during SONEX: Approach of NOx-saturated conditions, Geophys. Res. Lett., 26, 3081-3084.
-
Jaeglé, L., et al. (1999), Ozone production in the upper troposphere and the influence of aircraft during SONEX: Approach of NOx-saturated conditions, Geophys. Res. Lett., 26, 3081-3084.
-
Schultz, M.G., et al. (1999), On the origin of tropospheric ozone and NOx over the tropical south Pacific, J. Geophys. Res., 104, 5829-5843.
-
Thakur, A.N., et al. (1999), Distribution of reactive nitrogen species in the remote free troposphere: Data and model comparisons, Atmos. Environ., 33, 1403-1422.
-
Heikes, B.G., et al. (1996), Ozone-oxidant, oxides of nitrogen, and hydrocarbon budgets in the marine boundary layer over the south Atlantic, J. Geophys. Res., 101.D19, 24,221-24.
-
Singh, H.B., et al. (1996), Impact of biomass burning emissions on the composition of the south Atlantic troposphere: Reactive nitrogen and ozone, J. Geophys. Res., 101.D19, 24,203-24.
-
Fan, S.M., et al. (1994), Photochemistry of Reactive Nitrogen in the Subarctic Troposphere in Summer 1990 Observations and Modelling, J. Geophys. Res., 99, 16,867-16.
-
Fan, S.M., et al. (1994), Origin of Tropospheric NOx Over Subarctic Eastern Canada in Summer, J. Geophys. Res., 99, 16,867-16.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.