The ESPO website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Chris Hostetler
Organization:
NASA Langley Research Center
Co-Authored Publications:
- Crosbie, E., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
- Dmitrovic, S., et al. (2024), High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation, Atmos. Meas. Tech., 17, 3515-3532, doi:10.5194/amt-17-3515-2024.
- Siu, L. W., et al. (2024), Summarizing multiple aspects of triple collocation analysis in a single diagram, Frontiers in Remote Sensing, 5, 10.3389/frsen.2024.1395442, doi:10.3389/frsen.2024.1395442.
- Siu, L. W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
- Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
- Brunke, M. A., et al. (2023), Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development, J. Geophys. Res..
- Ferrare, R., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Zhu, H., et al. (2023), Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., doi:10.5194/acp-23-5023-2023.
- Cochrane, S. P., et al. (2022), Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments, Atmos. Meas. Tech., 15, 61-77, doi:10.5194/amt-15-61-2022.
- Fu, D., et al. (2022), An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2 Ex, Atmos. Chem. Phys., doi:10.5194/acp-22-8259-2022.
- Sanchez, K., et al. (2022), North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories, Atmos. Chem. Phys., 22, 2795-2815, doi:10.5194/acp-22-2795-2022.
- Schlosser, J., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
- Cochrane, S. P., et al. (2021), Biomass Burning Aerosol Heating Rates from the ORACLES, Atmos. Meas. Tech., and 2017 Experiments, doi:10.5194/acp-2021-169.
- Mardi, A. H., et al. (2021), Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality, J. Geophys. Res., 126, e2021JD034916, doi:10.1029/2021JD034916.
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Behrenfeld, M., et al. (2019), The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview, Front. Mar. Sci., 6, 122, doi:10.3389/fmars.2019.00122.
- Cochrane, S., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
- Jamet, C., et al. (2019), Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Front. Mar. Sci., 6, 251, doi:10.3389/fmars.2019.00251.
- Sorooshian, A., et al. (2019), Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast, Bull. Am. Meteorol. Soc., 1511-1528, doi:10.1175/BAMS-D-18-0100.1.
- Burton, S., et al. (2018), Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES, Appl. Opt., 57, 6061-6075, doi:10.1364/AO.57.006061.
- Ottaviani, M., et al. (2018), Airborne and shipborne polarimetric measurements over open ocean and T coastal waters: Intercomparisons and implications for spaceborne observations ⁎, Remote Sensing of Environment, 206, 375-390, doi:10.1016/j.rse.2017.12.015.
- Stamnes, S., et al. (2018), Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products, Appl. Opt., 57, 2394-2413, doi:10.1364/AO.57.002394.
- Xu, F., et al. (2018), Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), J. Geophys. Res., 123, 3175-3204, doi:10.1002/2017JD027926.
- Dawson, K. W., et al. (2017), Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models, J. Geophys. Res., 122, doi:10.1002/2017JD026913.
- Sawamura, P., et al. (2017), c Author(s) 2017. CC-BY 3.0 License. HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study, Atmos. Chem. Phys., doi:10.5194/acp-2016-1164.
- Berg, L. K., et al. (2016), (2016), The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth, J. Geophys. Res., 121, 336-361, doi:10.1002/2015JD023848.
- Burton, S., et al. (2016), Information content and sensitivity of the 3β+ 2α lidar measurement system for aerosol microphysical retrievals, Atmos. Meas. Tech., 9, 5555-5574, doi:10.5194/amt-9-5555-2016.
- Luo, T., et al. (2015), Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method, Optics Express, 23, 14095-14107, doi:10.1364/OE.23.014095.
- Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
- Eck, T. F., et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633-11656, doi:10.5194/acp-14-11633-2014.
- Kacenelenbogen, M. S., et al. (2014), An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud (AAC) detection and retrieval capability. , J. Geophys. Res., 119, 230-244.
- Sawamura, P., et al. (2014), Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set – DISCOVER-AQ 2011, Atmos. Meas. Tech., 7, 3095-3112, doi:10.5194/amt-7-3095-2014.
- Munchak, L. A., et al. (2013), MODIS 3 km aerosol product: applications over land in an urban/suburban region, Atmos. Meas. Tech., 6, 1747-1759, doi:10.5194/amt-6-1747-2013.
- Patadia, F., et al. (2013), Aerosol airmass type mapping over the Urban Mexico City region from space-based multi-angle imaging, Atmos. Chem. Phys., 13, 9525-9541, doi:10.5194/acp-13-9525-2013.
- Ryerson, T. B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
- Shinozuka, Y., et al. (2013), Hyperspectral aerosol optical depths from TCAP flights, J. Geophys. Res., 118, 12,180-12,194, doi:10.1002/2013JD020596.
- Zhai, P., et al. (2013), Uncertainty and interpretation of aerosol remote sensing due to vertical inhomogeneity, J. Quant. Spectrosc. Radiat. Transfer, 114, 91-100, doi:10.1016/j.jqsrt.2012.08.006.
- Ziemba, L. D., et al. (2013), Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity, Geophys. Res. Lett., 40, 417-422, doi:10.1029/2012GL054428.
- Burton, S., et al. (2012), Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73-98, doi:10.5194/amt-5-73-2012.
- Leahy, L., et al. (2012), On the nature and extent of optically thin marine low clouds, J. Geophys. Res., 117, D22201, doi:10.1029/2012JD017929.
- LeBlanc, S., et al. (2012), Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS, J. Geophys. Res., 117, D00V20, doi:10.1029/2012JD018106.
- Ottaviani, M., et al. (2012), Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill, Remote Sensing of Environment, 121, 389-403, doi:10.1016/j.rse.2012.02.016.
- Zaveri, R. A., et al. (2012), Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES), Atmos. Chem. Phys., 12, 7647-7687, doi:10.5194/acp-12-7647-2012.
- Kacenelenbogen, M. S., et al. (2011), An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study, Atmos. Chem. Phys., 11, 3981-4000, doi:10.5194/acp-11-3981-2011.
- Knobelspiesse, K., et al. (2011), Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar, Atmos. Chem. Phys., 11, 7045-7067, doi:10.5194/acp-11-7045-2011.
- Jacob, D. J., et al. (2010), The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191-5212, doi:10.5194/acp-10-5191-2010.
- Kassianov, E., et al. (2010), Retrieval of aerosol optical depth in vicinity of broken clouds from reflectance ratios: case study, Atmos. Meas. Tech., 3, 1333-1349, doi:10.5194/amt-3-1333-2010.
- Rogers, R. R., et al. (2009), NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation, Atmos. Chem. Phys., 9, 4811-4826, doi:10.5194/acp-9-4811-2009.
- Hair, J. W., et al. (2008), Airborne High Spectral Resolution Lidar for Profiling Aerosol Optical Properties, Appl. Opt., 47, doi:10.1364/AO.47.006734.
- Hu, Y., et al. (2008), Sea surface wind speed estimation from space-based lidar measurements, Atmos. Chem. Phys., 8, 3593-3601, doi:10.5194/acp-8-3593-2008.
- Liu, Z., et al. (2008), Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations, Atmos. Chem. Phys., 8, 5045-5060, doi:10.5194/acp-8-5045-2008.
- Diner, D., et al. (2004), Understanding Aerosols Paragon: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions, Bull. Am. Meteorol. Soc., 1491, doi:10.1175/BAMS-85-10-1491.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.