Organization
NOAA Chemical Sciences Laboratory
Email
Business Phone
Work
(303) 887-2523
Mobile
(303) 887-2523
Fax
(303) 497-5126
Business Address
325 Broadway
R/CSD2
Boulder, CO 80305
United States
First Author Publications
-
Brock, C.A., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
-
Brock, C.A., et al. (2019), ATom: L2 In Situ Measurements of Aerosol Microphysical Properties (AMP), Ornl Daac, doi:10.3334/ORNLDAAC/1671.
-
Brock, C.A., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081-3099, doi:10.5194/amt-12-3081-2019.
-
Brock, C.A., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 4987-5007, doi:10.5194/acp-16-4987-2016.
-
Brock, C.A., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters, Atmos. Chem. Phys., 16, 5009-5019, doi:10.5194/acp-16-5009-2016.
-
Brock, C.A., et al. (2011), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423-2453, doi:10.5194/acp-11-2423-2011.
-
Brock, C.A., et al. (2000), Ultrafine particle size distributions measured in aircraft exhaust plumes, J. Geophys. Res., 105, 26555-26567.
-
Brock, C.A., et al. (1995), New particle formation in the upper tropical troposphere: A source for the stratospheric aerosol, Science. In press.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Zhang, J., et al. (2024), Stratospheric air intrusions promote global-scale new particle formation.Science, Wang, 385, 210-216, doi:10.1126/science.adn2961.
-
Kahn, R.A., et al. (2023), Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within-The-Atmosphere Observations: A Three-Way Street, Rev. Geophys., 61, e2022RG000796, doi:10.1029/2022RG000796.
-
Katich, J.M., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.
-
Froyd, K.D., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
-
Yu, F., et al. (2022), Particle number concentrations and size distributions in the stratosphere: Implications of nucleation mechanisms and particle microphysics, Atmos. Chem. Phys., doi:10.5194/acp-2022-487.
-
Moore, R., et al. (2021), Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index, Atmos. Meas. Tech., 14, 4517-4542, doi:10.5194/amt-14-4517-2021.
-
Murphy, D., et al. (2021), Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere, Atmos. Chem. Phys., 21, 8915-8932, doi:10.5194/acp-21-8915-2021.
-
Ranjithkumar, A., et al. (2021), Constraints on global aerosol number concentration, SO2 and condensation sink in UKESM1 using ATom measurements, Atmos. Chem. Phys., 21, 4979-5014, doi:10.5194/acp-21-4979-2021.
-
Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
-
Williamson, C.J., et al. (2021), Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid and high latitudes, Atmos. Chem. Phys., 21, 9065-9088, doi:10.5194/acp-21-9065-2021.
-
Straus, A., et al. (2020), The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere, Atmos. Chem. Phys., 20, 15037-15060, doi:10.5194/acp-20-15037-2020.
-
Schill, G.P., et al. (2020), Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422-427, doi:10.1038/s41561-020-0586-1.
-
Veres, P.R., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
-
Zeng, L., et al. (2020), Global Measurements of Brown Carbon and Estimated Direct Radiative Effects, Geophys. Res. Lett., 47, doi:10.1029/2020GL088747.
-
Froyd, K.D., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
-
Murphy, D., et al. (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, doi:10.5194/acp-19-4093-2019.
-
Williamson, C.J., et al. (2019), ATom: In Situ Tropical Aerosol Properties and Comparable Global Model Outputs, Ornl Daac, doi:10.3334/ORNLDAAC/1684.
-
Williamson, C.J., et al. (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399-403, doi:10.1038/s41586-019-1638-9.
-
Yu, P., et al. (2019), Efficient In‐Cloud Removal of Aerosols by Deep Convection, Geophys. Res. Lett., 46, 1061-1069, doi:10.1029/2018GL080544.
-
Straus, A., et al. (2018), Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign, Atmos. Meas. Tech., 11, 369-383, doi:10.5194/amt-11-369-2018.
-
Straus, A., et al. (2018), ATom: Ultra-High Sensitivity Aerosol Spectrometer Calibration and Performance Data, Ornl Daac, doi:10.3334/ORNLDAAC/1619.
-
Williamson, C.J., et al. (2018), ATom: Nucleation Mode Aerosol Size Spectrometer Calibration and Performance Data, Ornl Daac, doi:10.3334/ORNLDAAC/1607.
-
Williamson, C.J., et al. (2018), Fast time response measurements of particle size distributions in the 3–60 nm size range with the nucleation mode aerosol size spectrometer, Atmos. Meas. Tech., 11, 3491-3509, doi:10.5194/amt-11-3491-2018.
-
Wofsy, S., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Kahn, R.A., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
-
Wagner, N.L., et al. (2015), In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft, Atmos. Chem. Phys., 15, 7085-7102, doi:10.5194/acp-15-7085-2015.
-
Ryerson, T.B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
-
McHaughton, C.S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
-
McNaughton, ., et al. (2011), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7561-2011.
-
Lance, S., et al. (2010), Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683-1706, doi:10.5194/amt-3-1683-2010.
-
Spackman, J.R., et al. (2010), Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic, Atmos. Chem. Phys., 10, 9667-9680, doi:10.5194/acp-10-9667-2010.
-
Bahreini, R., et al. (2008), Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens, Aerosol Science and Technology, 42, 465-471, doi:10.1080/02786820802178514.
-
Reeves, J.M., et al. (2008), Comparison of aerosol extinction coefficients, surface area density, and volume density from SAGE II and in situ aircraft measurements, J. Geophys. Res., 113, D10202, doi:10.1029/2007JD009357.
-
Newman, P.A., et al. (2001), Chance encounter with a stratospheric kerosene rocket plume from Russia over California, Geophys. Res. Lett., 28, 959-962.
-
Jonsson, H.H., et al. (1996), Evolution of the stratospheric aerosol in the northern hemisphere following the June 1991 volcanic eruption of Mt. Pinatubo: Role of tropospheric-stratospheric exchange and transport, J. Geophys. Res., 101, 1553-1570.
-
Fahey, D.W., et al. (1995), In situ observations of aircraft exhaust in the lower stratosphere at midlatitudes, J. Geophys. Res., 3065-3074 (manuscript in preparation).
-
Fahey, D.W., et al. (1995), Emission Measurements of the Concorde Supersonic Aircraft in the Lower Stratosphere, Science, 270, 070-74.
-
Jonsson, H.H., et al. (1995), Performance of a focused cavity aerosol spectrometer for measurements in the stratosphere of particle size in the 0.06-2.0 mm diameter range, J. Tech., 12, 115-129.
-
Salawitch, R.J., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
-
Salawitch, R.J., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
-
Sheridan, P.J., et al. (1994), Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes, Geophys. Res. Lett., 21, 2587-2590.
-
Weaver, A., et al. (1993), Effects of Pinatubo Aerosol on Stratospheric Ozone at Mid-Latitudes, Geophys. Res. Lett., 20, 2515-2518.
-
Wilson, J.C., et al. (1993), In Situ Observations of Aerosol and Chlorine Monoxide After the 1991 Eruption of Mount Pinatubo: Effect of Reactions on Sulfate Aerosol, Science, 261, 1140-1143.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.