We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HOx ≡H+OH+peroxy radicals) and their reservoirs (HOy ≡HOx +peroxides) in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism overestimates the observed HO2 and H2 O2 concentrations. Computation of HOx and HOy gasphase chemical budgets on the basis of the aircraft observations also indicates a large missing sink for both. We hypothesize that this could reflect HO2 uptake by aerosols, favored by low temperatures and relatively high aerosol loadings, through a mechanism that does not produce H2 O2 . We implemented such an uptake of HO2 by aerosol in the model using a standard reactive uptake coefficient parameterization with γ (HO2 ) values ranging from 0.02 at 275 K to 0.5 at 220 K. This successfully reproduces the concentrations and vertical distributions of the different HOx species and HOy reservoirs. HO2 uptake by aerosol is then a major HOx and HOy sink, decreasing mean OH and HO2 concentrations in the Arctic troposphere by 32% and 31% respectively. Better rate and product data for HO2 uptake by aerosol are needed to understand this role of aerosols in limiting the oxidizing power of the Arctic atmosphere.